Home
Class 11
MATHS
If a, b, c are positive real numbers, th...

If a, b, c are positive real numbers, then
`a^("log"b-"log"c) xx b^("log"c-"log"a) xx c^("log"a - "log"b)`

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( a^{(\log b - \log c)} \cdot b^{(\log c - \log a)} \cdot c^{(\log a - \log b)} \), we can use properties of logarithms and exponents. Here’s the step-by-step solution: ### Step 1: Apply the Property of Logarithms We can use the property of logarithms that states: \[ \log m - \log n = \log \left(\frac{m}{n}\right) \] Using this property, we rewrite the expression: \[ a^{(\log b - \log c)} = a^{\log\left(\frac{b}{c}\right)} \] \[ b^{(\log c - \log a)} = b^{\log\left(\frac{c}{a}\right)} \] \[ c^{(\log a - \log b)} = c^{\log\left(\frac{a}{b}\right)} \] ### Step 2: Rewrite the Entire Expression Now we can rewrite the entire expression: \[ a^{\log\left(\frac{b}{c}\right)} \cdot b^{\log\left(\frac{c}{a}\right)} \cdot c^{\log\left(\frac{a}{b}\right)} \] ### Step 3: Apply the Exponential Property Using the property \( x^{\log_y z} = z^{\log_y x} \), we can rewrite each term: \[ a^{\log\left(\frac{b}{c}\right)} = \left(\frac{b}{c}\right)^{\log a} \] \[ b^{\log\left(\frac{c}{a}\right)} = \left(\frac{c}{a}\right)^{\log b} \] \[ c^{\log\left(\frac{a}{b}\right)} = \left(\frac{a}{b}\right)^{\log c} \] ### Step 4: Combine the Terms Now we can combine these terms: \[ \left(\frac{b}{c}\right)^{\log a} \cdot \left(\frac{c}{a}\right)^{\log b} \cdot \left(\frac{a}{b}\right)^{\log c} \] ### Step 5: Simplify the Expression This can be simplified as follows: \[ = \frac{b^{\log a}}{c^{\log a}} \cdot \frac{c^{\log b}}{a^{\log b}} \cdot \frac{a^{\log c}}{b^{\log c}} \] Now, we can rearrange and combine the fractions: \[ = \frac{b^{\log a} \cdot c^{\log b} \cdot a^{\log c}}{c^{\log a} \cdot a^{\log b} \cdot b^{\log c}} \] ### Step 6: Observe the Cancellation Notice that each base appears in both the numerator and the denominator: - \(b^{\log a}\) in the numerator cancels with \(b^{\log c}\) in the denominator. - \(c^{\log b}\) in the numerator cancels with \(c^{\log a}\) in the denominator. - \(a^{\log c}\) in the numerator cancels with \(a^{\log b}\) in the denominator. Thus, we are left with: \[ = 1 \] ### Final Answer The final answer is: \[ \boxed{1} \]

To solve the expression \( a^{(\log b - \log c)} \cdot b^{(\log c - \log a)} \cdot c^{(\log a - \log b)} \), we can use properties of logarithms and exponents. Here’s the step-by-step solution: ### Step 1: Apply the Property of Logarithms We can use the property of logarithms that states: \[ \log m - \log n = \log \left(\frac{m}{n}\right) \] Using this property, we rewrite the expression: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

If a, b, c, are positive real numbers and log_(4) a=log_(6)b=log_(9) (a+b) , then b/a equals

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

If a, b, c are distinct positive real numbers each different from unity such that (log_b a.log_c a -log_a a) + (log_a b.log_c b-logb_ b) + (log_a c.log_b c - log_c c) = 0, then prove that abc = 1.

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to

If a and b are positive real numbers other than unity, then the least value of |"log"_(b) a + "log"_(a) b| , is

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :

If a, b, c are in G.P, then log_a x, log_b x, log_c x are in

If a, b, c are in G.P, then log_a x, log_b x, log_c x are in

Whenever a,b, and c are positive real numbers, which of the following expressions is equivalent to log_4 u-2 log_8 b+1/2 log_4 c ?

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If 0 le a le x, then the minimum value of "log"(a) x + "log"(x) x i...

    Text Solution

    |

  2. If a, b, c are positive real numbers, then a^("log"b-"log"c) xx b^(...

    Text Solution

    |

  3. The value of (bc)^log(b/c)*(ca)^log(c/a)*(ab)^log(a/b) is

    Text Solution

    |

  4. If x=(log)(2a)a , y=(log)(3a)2a ,z=(log)(4a)3a ,p rov et h a t1+x y z=...

    Text Solution

    |

  5. Evaluate : (1)/(log(a)bc + 1) + (1)/(log(b)ca + 1) + (1)/(log(c) ab ...

    Text Solution

    |

  6. If y=a^(1/(1-(log)a x))a n dz=a^(1/(1-(log)a y)),t h e np rov et h a t...

    Text Solution

    |

  7. If a = "log"2, b = "log" 3, c ="log" 7 " and " 6^(x) = 7^(x+4) then x=

    Text Solution

    |

  8. Given a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ prove that ...

    Text Solution

    |

  9. If 5^x=(0. 5)^y=1000 , then 1/x-1/y=

    Text Solution

    |

  10. Solve for x :4^x3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

    Text Solution

    |

  11. If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

    Text Solution

    |

  12. I flogx=(logy)/2=(logz)/5, th ten x^4y^3z^(- 2)=

    Text Solution

    |

  13. If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

    Text Solution

    |

  14. If a=log(24)12,b=log(48)36 and c=log(36)24, abc is equal to

    Text Solution

    |

  15. If a,b,c are any three consecutive integers , prove that log(1+ac)=2lo...

    Text Solution

    |

  16. If ("log"(a)x)/("log"(ab)x) = 4 + k + "log"(a)b, "then" k=

    Text Solution

    |

  17. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  18. (1)/("log"(2)n) + (1)/("log"(3)n) + (1)/("log"(4)n) + … + (1)/("log"(4...

    Text Solution

    |

  19. If n is a natural number such that n=P1^(a1)P2^(a2)P3^(a3)...Pk^(ak) ...

    Text Solution

    |

  20. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |