Home
Class 11
MATHS
The value of (bc)^log(b/c)*(ca)^log(c/a)...

The value of `(bc)^log(b/c)*(ca)^log(c/a)*(ab)^log(a/b)` is

A

0

B

`-1`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((bc)^{\log(b/c)} \cdot (ca)^{\log(c/a)} \cdot (ab)^{\log(a/b)}\), we will follow these steps: ### Step 1: Rewrite the expression Let \( t = (bc)^{\log(b/c)} \cdot (ca)^{\log(c/a)} \cdot (ab)^{\log(a/b)} \). ### Step 2: Take the logarithm of both sides Taking the logarithm of \( t \): \[ \log t = \log \left( (bc)^{\log(b/c)} \cdot (ca)^{\log(c/a)} \cdot (ab)^{\log(a/b)} \right) \] ### Step 3: Apply the logarithm properties Using the property \(\log(xy) = \log x + \log y\): \[ \log t = \log(bc)^{\log(b/c)} + \log(ca)^{\log(c/a)} + \log(ab)^{\log(a/b)} \] ### Step 4: Simplify using the power rule Using the property \(\log(x^n) = n \log x\): \[ \log t = \log(b/c) \cdot \log(bc) + \log(c/a) \cdot \log(ca) + \log(a/b) \cdot \log(ab) \] ### Step 5: Expand each term Now we expand each logarithm: - \(\log(bc) = \log b + \log c\) - \(\log(ca) = \log c + \log a\) - \(\log(ab) = \log a + \log b\) Substituting these into the equation: \[ \log t = \log(b/c)(\log b + \log c) + \log(c/a)(\log c + \log a) + \log(a/b)(\log a + \log b) \] ### Step 6: Expand the products Now we expand each product: \[ \log t = \left( \log b - \log c \right)(\log b + \log c) + \left( \log c - \log a \right)(\log c + \log a) + \left( \log a - \log b \right)(\log a + \log b) \] ### Step 7: Collect like terms After expanding, we will collect like terms: 1. The terms involving \(\log^2 b\), \(\log^2 c\), and \(\log^2 a\). 2. The cross terms involving \(\log a \log b\), \(\log b \log c\), and \(\log c \log a\). ### Step 8: Simplify the expression After simplification, we will find that all terms cancel out, leading to: \[ \log t = 0 \] ### Step 9: Solve for \( t \) Using the property of logarithms, if \(\log t = 0\), then: \[ t = 10^0 = 1 \] ### Final Answer Thus, the value of the expression \((bc)^{\log(b/c)} \cdot (ca)^{\log(c/a)} \cdot (ab)^{\log(a/b)}\) is: \[ \boxed{1} \]

To solve the expression \((bc)^{\log(b/c)} \cdot (ca)^{\log(c/a)} \cdot (ab)^{\log(a/b)}\), we will follow these steps: ### Step 1: Rewrite the expression Let \( t = (bc)^{\log(b/c)} \cdot (ca)^{\log(c/a)} \cdot (ab)^{\log(a/b)} \). ### Step 2: Take the logarithm of both sides Taking the logarithm of \( t \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If (2)/(b)=(1)/(a)+(1)/(c) ,then the value of (log(a+c)+log(a-2b+c))/(log(a-c)) is

The value of log ab- log|b|=

The value of a^(("log"_(b)("log"_(b)x))/("log"_(b) a)) , is

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

If log_(a)b+log_(b)c+log_(c)a vanishes where a, b and c are positive reals different from unity then the value of (log_(a)b)^(3) + (log_(b)c)^(3) + (log_(c)a)^(3) is

If log_(a)b+log_(b)c+log_(c)a vanishes where a, b and c are positive reals different than unity then the value of (log_(a)b)^(3) + (log_(b)c)^(3) + (log_(c)a)^(3) is

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

The value of ("log"_(a)("log"_(b)a))/("log"_(b)("log"_(a)b)) , is

The value of a^((log_b(log_bx))/(log_b a)), is

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If 0 le a le x, then the minimum value of "log"(a) x + "log"(x) x i...

    Text Solution

    |

  2. If a, b, c are positive real numbers, then a^("log"b-"log"c) xx b^(...

    Text Solution

    |

  3. The value of (bc)^log(b/c)*(ca)^log(c/a)*(ab)^log(a/b) is

    Text Solution

    |

  4. If x=(log)(2a)a , y=(log)(3a)2a ,z=(log)(4a)3a ,p rov et h a t1+x y z=...

    Text Solution

    |

  5. Evaluate : (1)/(log(a)bc + 1) + (1)/(log(b)ca + 1) + (1)/(log(c) ab ...

    Text Solution

    |

  6. If y=a^(1/(1-(log)a x))a n dz=a^(1/(1-(log)a y)),t h e np rov et h a t...

    Text Solution

    |

  7. If a = "log"2, b = "log" 3, c ="log" 7 " and " 6^(x) = 7^(x+4) then x=

    Text Solution

    |

  8. Given a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ prove that ...

    Text Solution

    |

  9. If 5^x=(0. 5)^y=1000 , then 1/x-1/y=

    Text Solution

    |

  10. Solve for x :4^x3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

    Text Solution

    |

  11. If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

    Text Solution

    |

  12. I flogx=(logy)/2=(logz)/5, th ten x^4y^3z^(- 2)=

    Text Solution

    |

  13. If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

    Text Solution

    |

  14. If a=log(24)12,b=log(48)36 and c=log(36)24, abc is equal to

    Text Solution

    |

  15. If a,b,c are any three consecutive integers , prove that log(1+ac)=2lo...

    Text Solution

    |

  16. If ("log"(a)x)/("log"(ab)x) = 4 + k + "log"(a)b, "then" k=

    Text Solution

    |

  17. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  18. (1)/("log"(2)n) + (1)/("log"(3)n) + (1)/("log"(4)n) + … + (1)/("log"(4...

    Text Solution

    |

  19. If n is a natural number such that n=P1^(a1)P2^(a2)P3^(a3)...Pk^(ak) ...

    Text Solution

    |

  20. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |