Home
Class 11
MATHS
Evaluate : (1)/(log(a)bc + 1) + (1)/(l...

Evaluate :
`(1)/(log_(a)bc + 1) + (1)/(log_(b)ca + 1) + (1)/(log_(c) ab + 1)`

A

0

B

1

C

2

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`(1)/("log"_(a)bc_(+1)) + (1)/("log"_(b)ca_(+1)) +(1)/("log"_(c)ab_(+1))`
`=(1)/("log"_(a)bc + "log"_(a)a) + (1)/("log"_(b)ca + "log"_(b)b) + (1)/("log"_(c)ab + "log"_(c)c)`
`=(1)/("log"_(a)abc) +(1)/("log"_(b)abc) + (1)/("log"_(c)abc)`
` = "log"_(abc) a + "log"_(abc) b + "log"_(abc) c = "log"_(abc)abc = 1`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

Prove that : (1)/( log _(a) ^(abc) )+(1)/(log_(b)^(abc) ) + (1)/( log _c^(abc)) =1

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

log (log_(ab) a +(1)/(log_(b)ab) is (where ab ne 1)

1/log_(ab)(abc)+1/log_(bc)(abc)+1/log_(ca)(abc) is equal to:

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

Solve : log_(5)(x + 1) - 1 = 1 + log_(5)(x - 1) .

Simplify: 1/(1+(log)_a b c)+1/(1+(log)_b c a)+1/(1+(log)_c a b)

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. The value of (bc)^log(b/c)*(ca)^log(c/a)*(ab)^log(a/b) is

    Text Solution

    |

  2. If x=(log)(2a)a , y=(log)(3a)2a ,z=(log)(4a)3a ,p rov et h a t1+x y z=...

    Text Solution

    |

  3. Evaluate : (1)/(log(a)bc + 1) + (1)/(log(b)ca + 1) + (1)/(log(c) ab ...

    Text Solution

    |

  4. If y=a^(1/(1-(log)a x))a n dz=a^(1/(1-(log)a y)),t h e np rov et h a t...

    Text Solution

    |

  5. If a = "log"2, b = "log" 3, c ="log" 7 " and " 6^(x) = 7^(x+4) then x=

    Text Solution

    |

  6. Given a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ prove that ...

    Text Solution

    |

  7. If 5^x=(0. 5)^y=1000 , then 1/x-1/y=

    Text Solution

    |

  8. Solve for x :4^x3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

    Text Solution

    |

  9. If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

    Text Solution

    |

  10. I flogx=(logy)/2=(logz)/5, th ten x^4y^3z^(- 2)=

    Text Solution

    |

  11. If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

    Text Solution

    |

  12. If a=log(24)12,b=log(48)36 and c=log(36)24, abc is equal to

    Text Solution

    |

  13. If a,b,c are any three consecutive integers , prove that log(1+ac)=2lo...

    Text Solution

    |

  14. If ("log"(a)x)/("log"(ab)x) = 4 + k + "log"(a)b, "then" k=

    Text Solution

    |

  15. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  16. (1)/("log"(2)n) + (1)/("log"(3)n) + (1)/("log"(4)n) + … + (1)/("log"(4...

    Text Solution

    |

  17. If n is a natural number such that n=P1^(a1)P2^(a2)P3^(a3)...Pk^(ak) ...

    Text Solution

    |

  18. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |

  19. If in a right angled triangle, a\ a n d\ b are the lengths of sides...

    Text Solution

    |

  20. If (1)/("log"(2)a) + (1)/("log"(4)a) + (1)/("log"(8)a) + (1)/("log"(16...

    Text Solution

    |