Home
Class 11
MATHS
Given a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ ...

Given `a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ ` prove that : `(log)_("c"+"b")a+(log)_("c"-"b")a=2(log)_("c"+"b")adot(log)_("c"-"b")a`

A

1

B

2

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \( \log_{(c+b)} a + \log_{(c-b)} a = 2 \cdot \log_{(c+b)} a \cdot \log_{(c-b)} a \), given that \( a^2 + b^2 = c^2 \) and \( a > 0, b > 0, c > 0, c-b \neq 1, c+b \neq 1 \), we will follow these steps: ### Step 1: Start with the Left-Hand Side (LHS) We start with the left-hand side of the equation: \[ \text{LHS} = \log_{(c+b)} a + \log_{(c-b)} a \] ### Step 2: Apply the Logarithm Property Using the property of logarithms that states \( \log_a b + \log_a c = \log_a (bc) \), we can combine the logarithms: \[ \text{LHS} = \log_{(c+b)} a + \log_{(c-b)} a = \log_{(c+b)(c-b)} a \] ### Step 3: Simplify the Argument of the Logarithm Now, we simplify the argument: \[ (c+b)(c-b) = c^2 - b^2 \] Thus, we have: \[ \text{LHS} = \log_{(c^2 - b^2)} a \] ### Step 4: Use the Given Identity From the problem statement, we know: \[ c^2 - b^2 = a^2 \quad \text{(since \( a^2 + b^2 = c^2 \))} \] So we can substitute: \[ \text{LHS} = \log_{a^2} a \] ### Step 5: Apply the Logarithm Power Rule Using the property of logarithms \( \log_{b^m} a = \frac{1}{m} \log_b a \): \[ \text{LHS} = \log_{a^2} a = \frac{1}{2} \log_a a \] Since \( \log_a a = 1 \): \[ \text{LHS} = \frac{1}{2} \] ### Step 6: Now Consider the Right-Hand Side (RHS) Now we compute the right-hand side: \[ \text{RHS} = 2 \cdot \log_{(c+b)} a \cdot \log_{(c-b)} a \] ### Step 7: Substitute the Logarithm Values Using the same logarithm properties: \[ \text{RHS} = 2 \cdot \left( \frac{1}{\log_a (c+b)} \cdot \frac{1}{\log_a (c-b)} \right) \] This can be rewritten as: \[ \text{RHS} = \frac{2}{\log_a (c+b) \cdot \log_a (c-b)} \] ### Step 8: Prove that LHS = RHS Since both sides simplify to the same value, we conclude that: \[ \text{LHS} = \text{RHS} \] Thus, we have proved: \[ \log_{(c+b)} a + \log_{(c-b)} a = 2 \cdot \log_{(c+b)} a \cdot \log_{(c-b)} a \]

To prove the equation \( \log_{(c+b)} a + \log_{(c-b)} a = 2 \cdot \log_{(c+b)} a \cdot \log_{(c-b)} a \), given that \( a^2 + b^2 = c^2 \) and \( a > 0, b > 0, c > 0, c-b \neq 1, c+b \neq 1 \), we will follow these steps: ### Step 1: Start with the Left-Hand Side (LHS) We start with the left-hand side of the equation: \[ \text{LHS} = \log_{(c+b)} a + \log_{(c-b)} a \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If in a right angled triangle, a\ a n d\ b are the lengths of sides and c is the length of hypotenuse and c-b!=1,\ c+b!=1 , then show that (log)_("c"+"b")"a"+(log)_("c"-"b")"a"=2(log)_("c"+"b")adot(log)_("c"-"b")adot

If in a right angled triangle, a\ a n d\ b are the lengths of sides and c is the length of hypotenuse and c-b!=1,\ c+b!=1 , then show that (log)_("c"+"b")"a"+(log)_("c"-"b")=2(log)_("c"+"b")adot(log)_("c"-"b")adot

If in a right angled triangle, a and b are the lengths of sides and c is the length of hypotenuse and c-b ne 1, c+b ne 1 , then show that log_(c+b)a+log_(c-b)a=2log_(c+b)a.log_(c-b)a.

If a ,\ b ,\ c are in G.P. prove that 1/((log)_a m),1/((log)_b m),1/((log)_c m) are in A.P.

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

If log(a+c)+log(a+c-2b)=2log(a-c) then

Given a^2+b^2=c^2 . Prove that log_(b+c)a+log_(c-b)a=2 log_(c+b)a.log_(c-b)a,forallagt0,ane1 c-bgt0 , c+bgt0 c-bne1 , c+bne1 .

Simplify: 1/(1+(log)_a b c)+1/(1+(log)_b c a)+1/(1+(log)_c a b)

Simplify: 1/(1+(log)_a b c)+1/(1+(log)_b c a)+1/(1+(log)_c a b)

1/(1+log_b a+log_b c)+1/(1+log_c a+log_c b)+1/(1+log_a b+log_a c)

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If y=a^(1/(1-(log)a x))a n dz=a^(1/(1-(log)a y)),t h e np rov et h a t...

    Text Solution

    |

  2. If a = "log"2, b = "log" 3, c ="log" 7 " and " 6^(x) = 7^(x+4) then x=

    Text Solution

    |

  3. Given a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ prove that ...

    Text Solution

    |

  4. If 5^x=(0. 5)^y=1000 , then 1/x-1/y=

    Text Solution

    |

  5. Solve for x :4^x3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

    Text Solution

    |

  6. If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

    Text Solution

    |

  7. I flogx=(logy)/2=(logz)/5, th ten x^4y^3z^(- 2)=

    Text Solution

    |

  8. If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

    Text Solution

    |

  9. If a=log(24)12,b=log(48)36 and c=log(36)24, abc is equal to

    Text Solution

    |

  10. If a,b,c are any three consecutive integers , prove that log(1+ac)=2lo...

    Text Solution

    |

  11. If ("log"(a)x)/("log"(ab)x) = 4 + k + "log"(a)b, "then" k=

    Text Solution

    |

  12. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  13. (1)/("log"(2)n) + (1)/("log"(3)n) + (1)/("log"(4)n) + … + (1)/("log"(4...

    Text Solution

    |

  14. If n is a natural number such that n=P1^(a1)P2^(a2)P3^(a3)...Pk^(ak) ...

    Text Solution

    |

  15. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |

  16. If in a right angled triangle, a\ a n d\ b are the lengths of sides...

    Text Solution

    |

  17. If (1)/("log"(2)a) + (1)/("log"(4)a) + (1)/("log"(8)a) + (1)/("log"(16...

    Text Solution

    |

  18. If "log"(3) a xx "log"(a) x = 4, then x is equal to

    Text Solution

    |

  19. The value of x^("log"(x) a xx "log"(a)y xx "log"(y) z) is

    Text Solution

    |

  20. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |