Home
Class 11
MATHS
If 5^x=(0. 5)^y=1000 , then 1/x-1/y=...

If `5^x=(0. 5)^y=1000 , then 1/x-1/y=`

A

1

B

`(1)/(2)`

C

`(1)/(3)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5^x = (0.5)^y = 1000 \) and find the value of \( \frac{1}{x} - \frac{1}{y} \), we can follow these steps: ### Step 1: Express \( x \) and \( y \) in terms of logarithms From the equation \( 5^x = 1000 \), we can take logarithms on both sides: \[ x \log(5) = \log(1000) \] Thus, we can express \( x \) as: \[ x = \frac{\log(1000)}{\log(5)} \] Similarly, from \( (0.5)^y = 1000 \), we take logarithms: \[ y \log(0.5) = \log(1000) \] So, we can express \( y \) as: \[ y = \frac{\log(1000)}{\log(0.5)} \] ### Step 2: Find \( \frac{1}{x} \) and \( \frac{1}{y} \) Now we need to find \( \frac{1}{x} \) and \( \frac{1}{y} \): \[ \frac{1}{x} = \frac{\log(5)}{\log(1000)} \] \[ \frac{1}{y} = \frac{\log(0.5)}{\log(1000)} \] ### Step 3: Calculate \( \frac{1}{x} - \frac{1}{y} \) Now we can find \( \frac{1}{x} - \frac{1}{y} \): \[ \frac{1}{x} - \frac{1}{y} = \frac{\log(5)}{\log(1000)} - \frac{\log(0.5)}{\log(1000)} \] Combining the fractions: \[ \frac{1}{x} - \frac{1}{y} = \frac{\log(5) - \log(0.5)}{\log(1000)} \] ### Step 4: Simplify the expression Using the property of logarithms \( \log(a) - \log(b) = \log\left(\frac{a}{b}\right) \): \[ \log(5) - \log(0.5) = \log\left(\frac{5}{0.5}\right) = \log(10) \] Thus, we have: \[ \frac{1}{x} - \frac{1}{y} = \frac{\log(10)}{\log(1000)} \] ### Step 5: Calculate \( \log(1000) \) Since \( 1000 = 10^3 \), we have: \[ \log(1000) = 3 \] Therefore: \[ \frac{1}{x} - \frac{1}{y} = \frac{\log(10)}{3} \] And since \( \log(10) = 1 \): \[ \frac{1}{x} - \frac{1}{y} = \frac{1}{3} \] ### Final Answer Thus, the final result is: \[ \frac{1}{x} - \frac{1}{y} = \frac{1}{3} \]

To solve the equation \( 5^x = (0.5)^y = 1000 \) and find the value of \( \frac{1}{x} - \frac{1}{y} \), we can follow these steps: ### Step 1: Express \( x \) and \( y \) in terms of logarithms From the equation \( 5^x = 1000 \), we can take logarithms on both sides: \[ x \log(5) = \log(1000) \] Thus, we can express \( x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If (2.3)^x=(0.23)^y=1000 , then find the value of 1/x-1/y .

If x^3-2x^2y^2+5x+y-5=0 and y(1)=1 , then (a) y^(prime)(1)=4/3 (b) y'(1)=-4/3 (c) y''(1)=-8(22)/(27) (d) y^(prime)(1)=2/3

If the point P(x ,\ y) is equidistant from A(5,\ 1) and B(-1,\ 5) , then (a) 5x=y (b) x=5y (c) 3x=2y (d) 2x=3y

Find the value of (5x^6)xx\ (-1. 5 x^2y^3)xx(-12 x y^2)\ when \ x=1, y=0. 5.

If A=[(5,x),( y,0)] and A=A^T , then a) x=0,\ \ y=5 (b) x+y=5 (c) x=y (d) none of these

If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))/(5) + ….oo))/((x + (x^(3))/(3) + (x^(5))/(5) + ……oo)) =

Statement 1: The plane 5x+2z-8=0 contains the line 2x-y+z-3=0 and 3x+y+z=5 , and is perpendicular to 2x-y-5z-3=0 . Statement 2: The plane 3x+y+z=5 , meets the line x-1=y+1=z-1 at the point (1,1,1)

For what value of lambda are the three lines 2x-5y+3=0,\ 5x-9y+lambda=0\ a n d\ x-2y+1=0 concurrent?

The image of the line (x-1)/3=(y-3)/1=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1) (x+3)/3=(y-5)/1=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/5 (3) (x-3)/3=(y+5)/1=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/5

If [2x+1 5x0y^2+1]=[x+3 10 0 26] , find the value of (x+y) .

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If a = "log"2, b = "log" 3, c ="log" 7 " and " 6^(x) = 7^(x+4) then x=

    Text Solution

    |

  2. Given a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ prove that ...

    Text Solution

    |

  3. If 5^x=(0. 5)^y=1000 , then 1/x-1/y=

    Text Solution

    |

  4. Solve for x :4^x3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

    Text Solution

    |

  5. If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

    Text Solution

    |

  6. I flogx=(logy)/2=(logz)/5, th ten x^4y^3z^(- 2)=

    Text Solution

    |

  7. If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

    Text Solution

    |

  8. If a=log(24)12,b=log(48)36 and c=log(36)24, abc is equal to

    Text Solution

    |

  9. If a,b,c are any three consecutive integers , prove that log(1+ac)=2lo...

    Text Solution

    |

  10. If ("log"(a)x)/("log"(ab)x) = 4 + k + "log"(a)b, "then" k=

    Text Solution

    |

  11. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  12. (1)/("log"(2)n) + (1)/("log"(3)n) + (1)/("log"(4)n) + … + (1)/("log"(4...

    Text Solution

    |

  13. If n is a natural number such that n=P1^(a1)P2^(a2)P3^(a3)...Pk^(ak) ...

    Text Solution

    |

  14. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |

  15. If in a right angled triangle, a\ a n d\ b are the lengths of sides...

    Text Solution

    |

  16. If (1)/("log"(2)a) + (1)/("log"(4)a) + (1)/("log"(8)a) + (1)/("log"(16...

    Text Solution

    |

  17. If "log"(3) a xx "log"(a) x = 4, then x is equal to

    Text Solution

    |

  18. The value of x^("log"(x) a xx "log"(a)y xx "log"(y) z) is

    Text Solution

    |

  19. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |

  20. If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=...

    Text Solution

    |