Home
Class 11
MATHS
If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=...

If `(logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b')` then xyz=

A

2

B

1

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we start with the expression: \[ \frac{\log x}{2a + 3b - 5c} = \frac{\log y}{2b + 3c - 5a} = \frac{\log z}{2c + 3a - 5b} = k \] ### Step 1: Express each logarithm in terms of \( k \) From the equality, we can express \(\log x\), \(\log y\), and \(\log z\) in terms of \( k \): 1. \(\log x = k(2a + 3b - 5c)\) (Equation 1) 2. \(\log y = k(2b + 3c - 5a)\) (Equation 2) 3. \(\log z = k(2c + 3a - 5b)\) (Equation 3) ### Step 2: Add the three logarithmic equations Now, we will add these three equations: \[ \log x + \log y + \log z = k(2a + 3b - 5c) + k(2b + 3c - 5a) + k(2c + 3a - 5b) \] ### Step 3: Factor out \( k \) Factoring \( k \) out from the right-hand side gives us: \[ \log x + \log y + \log z = k \left( (2a - 5a + 3a) + (3b + 2b - 5b) + (3c + 2c - 5c) \right) \] ### Step 4: Simplify the expression inside the parentheses Now simplifying the terms inside the parentheses: - For \( a \): \( 2a + 3a - 5a = 0 \) - For \( b \): \( 3b + 2b - 5b = 0 \) - For \( c \): \( 3c + 2c - 5c = 0 \) Thus, we have: \[ \log x + \log y + \log z = k \cdot 0 = 0 \] ### Step 5: Use the property of logarithms Using the property of logarithms that states \(\log a + \log b + \log c = \log(abc)\), we can write: \[ \log xyz = 0 \] ### Step 6: Solve for \( xyz \) Taking the antilogarithm of both sides gives: \[ xyz = e^0 = 1 \] ### Final Answer Thus, the value of \( xyz \) is: \[ \boxed{1} \]

To solve the equation given in the question, we start with the expression: \[ \frac{\log x}{2a + 3b - 5c} = \frac{\log y}{2b + 3c - 5a} = \frac{\log z}{2c + 3a - 5b} = k \] ### Step 1: Express each logarithm in terms of \( k \) ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

"If" ("log"_(10)a)/(2) = ("log"_(10)b)/(3) = ("log"_(10)c)/(5) , then bc =

If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5) , then ca equals

If (a+(log)_4 3)/(a+(log)_2 3)=(a+(log)_8 3)/(a+(log)_4 3)=b ,then b is equal to 1/2 (2) 2/3 (c) 1/3 (d) 3/2

If x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ then prove that x y z=x y+y z+z xdot

If log_(b)5=a,log_(b)2.5=c,and5^(x)=2.5 , then x=

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

If (log)_a b=2,(log)_b c=2,a n d(log)_3c=3+(log)_3a , then the value of c//(a b) is............

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If 5^x=(0. 5)^y=1000 , then 1/x-1/y=

    Text Solution

    |

  2. Solve for x :4^x3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

    Text Solution

    |

  3. If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

    Text Solution

    |

  4. I flogx=(logy)/2=(logz)/5, th ten x^4y^3z^(- 2)=

    Text Solution

    |

  5. If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

    Text Solution

    |

  6. If a=log(24)12,b=log(48)36 and c=log(36)24, abc is equal to

    Text Solution

    |

  7. If a,b,c are any three consecutive integers , prove that log(1+ac)=2lo...

    Text Solution

    |

  8. If ("log"(a)x)/("log"(ab)x) = 4 + k + "log"(a)b, "then" k=

    Text Solution

    |

  9. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  10. (1)/("log"(2)n) + (1)/("log"(3)n) + (1)/("log"(4)n) + … + (1)/("log"(4...

    Text Solution

    |

  11. If n is a natural number such that n=P1^(a1)P2^(a2)P3^(a3)...Pk^(ak) ...

    Text Solution

    |

  12. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |

  13. If in a right angled triangle, a\ a n d\ b are the lengths of sides...

    Text Solution

    |

  14. If (1)/("log"(2)a) + (1)/("log"(4)a) + (1)/("log"(8)a) + (1)/("log"(16...

    Text Solution

    |

  15. If "log"(3) a xx "log"(a) x = 4, then x is equal to

    Text Solution

    |

  16. The value of x^("log"(x) a xx "log"(a)y xx "log"(y) z) is

    Text Solution

    |

  17. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |

  18. If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=...

    Text Solution

    |

  19. If loga/(b-c) = logb/(c-a) = logc/(a-b), then a^(b+c).b^(c+a).c^(a+b)...

    Text Solution

    |

  20. Solve log(2)|4-5x| gt 2.

    Text Solution

    |