Home
Class 11
MATHS
I flogx=(logy)/2=(logz)/5, th ten x^4y^3...

`I flogx=(logy)/2=(logz)/5, th ten x^4y^3z^(- 2)=`

A

2

B

10

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^4 y^3 z^{-2} \) given that \( \log x = \frac{\log y}{2} = \frac{\log z}{5} \), we can follow these steps: ### Step 1: Set a common variable for logarithms Let \( \log x = k \). Then we can express \( \log y \) and \( \log z \) in terms of \( k \): - From \( \log x = k \), we have \( \log y = 2k \) (since \( \log y = 2 \log x \)). - From \( \log z = 5k \) (since \( \log z = 5 \log x \)). ### Step 2: Substitute the logarithmic expressions into the equation We need to evaluate \( x^4 y^3 z^{-2} \). Taking the logarithm of both sides, we have: \[ \log(x^4 y^3 z^{-2}) = \log(x^4) + \log(y^3) + \log(z^{-2}) \] ### Step 3: Apply the power rule of logarithms Using the property \( \log(a^b) = b \log a \): \[ \log(x^4) = 4 \log x = 4k \] \[ \log(y^3) = 3 \log y = 3(2k) = 6k \] \[ \log(z^{-2}) = -2 \log z = -2(5k) = -10k \] ### Step 4: Combine the logarithmic expressions Now substituting these back into our equation: \[ \log(x^4 y^3 z^{-2}) = 4k + 6k - 10k \] \[ = (4k + 6k - 10k) = 0 \] ### Step 5: Exponentiate to find the value of \( x^4 y^3 z^{-2} \) Since \( \log(x^4 y^3 z^{-2}) = 0 \), we can exponentiate both sides: \[ x^4 y^3 z^{-2} = 10^0 = 1 \] ### Final Answer Thus, the value of \( x^4 y^3 z^{-2} \) is \( 1 \). ---

To solve the equation \( x^4 y^3 z^{-2} \) given that \( \log x = \frac{\log y}{2} = \frac{\log z}{5} \), we can follow these steps: ### Step 1: Set a common variable for logarithms Let \( \log x = k \). Then we can express \( \log y \) and \( \log z \) in terms of \( k \): - From \( \log x = k \), we have \( \log y = 2k \) (since \( \log y = 2 \log x \)). - From \( \log z = 5k \) (since \( \log z = 5 \log x \)). ### Step 2: Substitute the logarithmic expressions into the equation ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) , then which of the following is/are true? z y z=1 (b) x^a y^b z^c=1 x^(b+c)y^(c+b)=1 (d) x y z=x^a y^b z^c

If (x(y+z-x))/(logx)=(y(z+x-y))/(logy) =(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x

If (x(y+z-x))/(logx)=(y(z+x-y))/(logy)(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x

If (logx)/(q-r)= (logy)/(r-p)=(logz)/(p-q) prove that x^(q+r).y^(r+p).z^(p+q)=x^p.y^q.z^r

If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), then x^(a-b)*y^(b-c)*z^(c-a)=

The line (x-3)/1=(y-4)/2=(z-5)/2 cuts the plane x+y+z=17 at

Suppose x , y ,z=0 and are not equal to 1 and logx+logy+logz=0. Find the value of 1/(x^(logy))+1/(^(logz))1/(y^(logz))+1/(^(logx))1/(z^(logx))+1/(^(logy))

The sine of the angle between the line (x-2)/(3) = (y-3)/(4) = (z-4)/(5) and the plane 2x-2y+z=5 is

The image of the line (x-1)/3=(y-3)/1=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1) (x+3)/3=(y-5)/1=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/5 (3) (x-3)/3=(y+5)/1=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/5

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. Solve for x :4^x3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

    Text Solution

    |

  2. If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

    Text Solution

    |

  3. I flogx=(logy)/2=(logz)/5, th ten x^4y^3z^(- 2)=

    Text Solution

    |

  4. If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

    Text Solution

    |

  5. If a=log(24)12,b=log(48)36 and c=log(36)24, abc is equal to

    Text Solution

    |

  6. If a,b,c are any three consecutive integers , prove that log(1+ac)=2lo...

    Text Solution

    |

  7. If ("log"(a)x)/("log"(ab)x) = 4 + k + "log"(a)b, "then" k=

    Text Solution

    |

  8. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  9. (1)/("log"(2)n) + (1)/("log"(3)n) + (1)/("log"(4)n) + … + (1)/("log"(4...

    Text Solution

    |

  10. If n is a natural number such that n=P1^(a1)P2^(a2)P3^(a3)...Pk^(ak) ...

    Text Solution

    |

  11. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |

  12. If in a right angled triangle, a\ a n d\ b are the lengths of sides...

    Text Solution

    |

  13. If (1)/("log"(2)a) + (1)/("log"(4)a) + (1)/("log"(8)a) + (1)/("log"(16...

    Text Solution

    |

  14. If "log"(3) a xx "log"(a) x = 4, then x is equal to

    Text Solution

    |

  15. The value of x^("log"(x) a xx "log"(a)y xx "log"(y) z) is

    Text Solution

    |

  16. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |

  17. If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=...

    Text Solution

    |

  18. If loga/(b-c) = logb/(c-a) = logc/(a-b), then a^(b+c).b^(c+a).c^(a+b)...

    Text Solution

    |

  19. Solve log(2)|4-5x| gt 2.

    Text Solution

    |

  20. The sum of the series "log"(4)2-"log"(8)2 + "log"(16)2- "log"(32) 2...

    Text Solution

    |