Home
Class 11
MATHS
If ("log"(a)x)/("log"(ab)x) = 4 + k + "l...

If `("log"_(a)x)/("log"_(ab)x) = 4 + k + "log"_(a)b, "then" k=`

A

0

B

1

C

`-2`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\log_a x}{\log_{ab} x} = 4 + k + \log_a b\), we will follow these steps: ### Step 1: Rewrite the logarithm We can use the change of base formula for logarithms. The change of base formula states that: \[ \log_{ab} x = \frac{\log_a x}{\log_a (ab)} \] Using this, we can express \(\log_{ab} x\) as: \[ \log_{ab} x = \frac{\log_a x}{\log_a a + \log_a b} = \frac{\log_a x}{1 + \log_a b} \] ### Step 2: Substitute into the equation Now, substituting \(\log_{ab} x\) into our original equation gives us: \[ \frac{\log_a x}{\frac{\log_a x}{1 + \log_a b}} = 4 + k + \log_a b \] This simplifies to: \[ \log_a x \cdot \frac{1 + \log_a b}{\log_a x} = 4 + k + \log_a b \] Thus, we have: \[ 1 + \log_a b = 4 + k + \log_a b \] ### Step 3: Simplify the equation Next, we can subtract \(\log_a b\) from both sides: \[ 1 = 4 + k \] ### Step 4: Solve for \(k\) Now, we can isolate \(k\): \[ k = 1 - 4 = -3 \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{-3} \]

To solve the equation \(\frac{\log_a x}{\log_{ab} x} = 4 + k + \log_a b\), we will follow these steps: ### Step 1: Rewrite the logarithm We can use the change of base formula for logarithms. The change of base formula states that: \[ \log_{ab} x = \frac{\log_a x}{\log_a (ab)} \] Using this, we can express \(\log_{ab} x\) as: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If "log"_(a) ab = x, then the value of "log"_(b)ab, is

If "log"_(3) a xx "log"_(a) x = 4 , then x is equal to

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

If "log"_(2)x + "log"_(4)x + "log"_(16)x = (21)/(4) , then x equals to

If "log"_(ax)x, "log"_(bx) x, "log"_(cx)x are in H.P., where a, b, c, x belong to (1, oo) , then a, b, c are in

If "log"_(4) 2 + "log"_(4) 4 + "log"_(4) 16 + "log"_(4) x = 6 , then x =

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If a=log(24)12,b=log(48)36 and c=log(36)24, abc is equal to

    Text Solution

    |

  2. If a,b,c are any three consecutive integers , prove that log(1+ac)=2lo...

    Text Solution

    |

  3. If ("log"(a)x)/("log"(ab)x) = 4 + k + "log"(a)b, "then" k=

    Text Solution

    |

  4. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  5. (1)/("log"(2)n) + (1)/("log"(3)n) + (1)/("log"(4)n) + … + (1)/("log"(4...

    Text Solution

    |

  6. If n is a natural number such that n=P1^(a1)P2^(a2)P3^(a3)...Pk^(ak) ...

    Text Solution

    |

  7. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |

  8. If in a right angled triangle, a\ a n d\ b are the lengths of sides...

    Text Solution

    |

  9. If (1)/("log"(2)a) + (1)/("log"(4)a) + (1)/("log"(8)a) + (1)/("log"(16...

    Text Solution

    |

  10. If "log"(3) a xx "log"(a) x = 4, then x is equal to

    Text Solution

    |

  11. The value of x^("log"(x) a xx "log"(a)y xx "log"(y) z) is

    Text Solution

    |

  12. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |

  13. If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=...

    Text Solution

    |

  14. If loga/(b-c) = logb/(c-a) = logc/(a-b), then a^(b+c).b^(c+a).c^(a+b)...

    Text Solution

    |

  15. Solve log(2)|4-5x| gt 2.

    Text Solution

    |

  16. The sum of the series "log"(4)2-"log"(8)2 + "log"(16)2- "log"(32) 2...

    Text Solution

    |

  17. If log0.3(x-1)ltlog0.09(x-1), then x lies in the interval

    Text Solution

    |

  18. The values of x satisfying x^("log"(5)) gt5 lie in the interval

    Text Solution

    |

  19. The solution set of the equation "log"(x)2 xx "log"(2x)2 = "log"(4x...

    Text Solution

    |

  20. Solve log(0.2). (x+2)/x le 1.

    Text Solution

    |