Home
Class 11
MATHS
(1)/("log"(2)n) + (1)/("log"(3)n) + (1)/...

`(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=`

A

1

B

`"log"_(43!)n`

C

`"log"_(n)43!`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \ldots + \frac{1}{\log_{43} n} = ? \] we can use the property of logarithms that states: \[ \log_a b = \frac{1}{\log_b a} \] This means we can rewrite each term in the sum. Thus, we have: \[ \frac{1}{\log_2 n} = \log_n 2, \quad \frac{1}{\log_3 n} = \log_n 3, \quad \frac{1}{\log_4 n} = \log_n 4, \quad \ldots, \quad \frac{1}{\log_{43} n} = \log_n 43 \] Now, substituting these into our original equation gives us: \[ \log_n 2 + \log_n 3 + \log_n 4 + \ldots + \log_n 43 \] Using the property of logarithms that states: \[ \log_a b + \log_a c = \log_a (bc) \] we can combine all these logarithms into a single logarithm: \[ \log_n (2 \cdot 3 \cdot 4 \cdots 43) \] The product \(2 \cdot 3 \cdot 4 \cdots 43\) is the factorial of 43, denoted as \(43!\). Therefore, we can rewrite our equation as: \[ \log_n (43!) \] Thus, the final answer is: \[ \log_n (43!) \]

To solve the equation \[ \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \ldots + \frac{1}{\log_{43} n} = ? \] we can use the property of logarithms that states: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If (1)/("log"_(2)a) + (1)/("log"_(4)a) + (1)/("log"_(8)a) + (1)/("log"_(16)a) + …. + (1)/("log"_(2^(n))a) = (n(n+1)/(lambda)) then lambda equals

If (1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+ (1)/(log_(2^(n))a) = (n(n+1))/(k) then k log_(a)2 is equal to

Show that: 1/(log_2n)+1/(log_3n)+1/(log_4n)+…+1/(log_43n)=1/(log_(43!)n)

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

If n >1,t h e np rov et h a t 1/((log)_2n)+1/((log)_3n)++1/((log)_(53)n)=1/((log)_(53 !)n)dot

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)

The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125))) , is

If ngt1 then prove that 1/(log_2 n )+1/(log_3 n)+.................+1/log_(53) n =1/(log_(53!) n

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If ("log"(a)x)/("log"(ab)x) = 4 + k + "log"(a)b, "then" k=

    Text Solution

    |

  2. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  3. (1)/("log"(2)n) + (1)/("log"(3)n) + (1)/("log"(4)n) + … + (1)/("log"(4...

    Text Solution

    |

  4. If n is a natural number such that n=P1^(a1)P2^(a2)P3^(a3)...Pk^(ak) ...

    Text Solution

    |

  5. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |

  6. If in a right angled triangle, a\ a n d\ b are the lengths of sides...

    Text Solution

    |

  7. If (1)/("log"(2)a) + (1)/("log"(4)a) + (1)/("log"(8)a) + (1)/("log"(16...

    Text Solution

    |

  8. If "log"(3) a xx "log"(a) x = 4, then x is equal to

    Text Solution

    |

  9. The value of x^("log"(x) a xx "log"(a)y xx "log"(y) z) is

    Text Solution

    |

  10. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |

  11. If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=...

    Text Solution

    |

  12. If loga/(b-c) = logb/(c-a) = logc/(a-b), then a^(b+c).b^(c+a).c^(a+b)...

    Text Solution

    |

  13. Solve log(2)|4-5x| gt 2.

    Text Solution

    |

  14. The sum of the series "log"(4)2-"log"(8)2 + "log"(16)2- "log"(32) 2...

    Text Solution

    |

  15. If log0.3(x-1)ltlog0.09(x-1), then x lies in the interval

    Text Solution

    |

  16. The values of x satisfying x^("log"(5)) gt5 lie in the interval

    Text Solution

    |

  17. The solution set of the equation "log"(x)2 xx "log"(2x)2 = "log"(4x...

    Text Solution

    |

  18. Solve log(0.2). (x+2)/x le 1.

    Text Solution

    |

  19. Solve for x: 5^(log x) + 5x^(log 5) =3 (a>0)

    Text Solution

    |

  20. The number of solutions of "log"("sin"x)(2^(" tan"x)) gt 0 in the inte...

    Text Solution

    |