Home
Class 11
MATHS
If (1)/("log"(2)a) + (1)/("log"(4)a) + (...

If `(1)/("log"_(2)a) + (1)/("log"_(4)a) + (1)/("log"_(8)a) + (1)/("log"_(16)a) + …. + (1)/("log"_(2^(n))a) = (n(n+1)/(lambda))` then `lambda` equals

A

`"log"_(2)a`

B

`"log"_(a)4`

C

`"log"_(2)a^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{\log_2 a} + \frac{1}{\log_4 a} + \frac{1}{\log_8 a} + \frac{1}{\log_{16} a} + \ldots + \frac{1}{\log_{2^n} a} = \frac{n(n+1)}{\lambda} \] we will follow these steps: ### Step 1: Rewrite the logarithms Using the change of base formula, we know that: \[ \log_b a = \frac{1}{\log_a b} \] Thus, we can rewrite each term on the left-hand side: \[ \frac{1}{\log_{2^k} a} = \log_a (2^k) \] So, we can rewrite the entire left-hand side: \[ \log_a 2 + \log_a 4 + \log_a 8 + \ldots + \log_a (2^n) \] ### Step 2: Simplify the logarithmic terms Next, we can express the logarithms in terms of base 2: \[ \log_a (2^k) = k \cdot \log_a 2 \] Thus, the left-hand side becomes: \[ \log_a 2 + 2 \log_a 2 + 3 \log_a 2 + \ldots + n \log_a 2 \] ### Step 3: Factor out the common term Factoring out \(\log_a 2\), we get: \[ \log_a 2 \left(1 + 2 + 3 + \ldots + n\right) \] ### Step 4: Use the formula for the sum of the first n natural numbers The sum of the first n natural numbers is given by: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \] Thus, we can rewrite the left-hand side as: \[ \log_a 2 \cdot \frac{n(n+1)}{2} \] ### Step 5: Set the left-hand side equal to the right-hand side Now we have: \[ \log_a 2 \cdot \frac{n(n+1)}{2} = \frac{n(n+1)}{\lambda} \] ### Step 6: Cancel out \(n(n+1)\) (assuming \(n(n+1) \neq 0\)) Dividing both sides by \(n(n+1)\): \[ \frac{\log_a 2}{2} = \frac{1}{\lambda} \] ### Step 7: Solve for \(\lambda\) Taking the reciprocal gives: \[ \lambda = \frac{2}{\log_a 2} \] ### Step 8: Rewrite \(\log_a 2\) using change of base formula Using the change of base formula: \[ \log_a 2 = \frac{1}{\log_2 a} \] Thus, we can express \(\lambda\) as: \[ \lambda = 2 \cdot \log_2 a \] ### Conclusion Therefore, the value of \(\lambda\) is: \[ \lambda = 2 \log_2 a \]

To solve the equation \[ \frac{1}{\log_2 a} + \frac{1}{\log_4 a} + \frac{1}{\log_8 a} + \frac{1}{\log_{16} a} + \ldots + \frac{1}{\log_{2^n} a} = \frac{n(n+1)}{\lambda} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

If (1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+ (1)/(log_(2^(n))a) = (n(n+1))/(k) then k log_(a)2 is equal to

("log"_(2)a)/(3) = ("log"_(2)b)/(4) = ("log"_(2)c)/(5lambda) " and " a^(-3) b^(-4) c = 1 " then " lambda =

The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125))) , is

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

Prove that: 1/(log_2N)+1/(log_3N)+1/(log_4N)+…+1/(log_(2011)N)=1/(log_(2011!)N)

If (log)_(10)5=aa n d(log)_(10)3=b ,t h e n (A) (log)_(30)8=(3(1-a))/(b+1) (B) (log)_(40)15=(a+b)/(3-2a) (C) (log)_(243)32=(1-a)/b (d) none of these

Prove that ((log)_a N)/((log)_(a b)N)=1+(log)_a b

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. Prove that number (log)2 7 is an irrational number.

    Text Solution

    |

  2. If in a right angled triangle, a\ a n d\ b are the lengths of sides...

    Text Solution

    |

  3. If (1)/("log"(2)a) + (1)/("log"(4)a) + (1)/("log"(8)a) + (1)/("log"(16...

    Text Solution

    |

  4. If "log"(3) a xx "log"(a) x = 4, then x is equal to

    Text Solution

    |

  5. The value of x^("log"(x) a xx "log"(a)y xx "log"(y) z) is

    Text Solution

    |

  6. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |

  7. If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=...

    Text Solution

    |

  8. If loga/(b-c) = logb/(c-a) = logc/(a-b), then a^(b+c).b^(c+a).c^(a+b)...

    Text Solution

    |

  9. Solve log(2)|4-5x| gt 2.

    Text Solution

    |

  10. The sum of the series "log"(4)2-"log"(8)2 + "log"(16)2- "log"(32) 2...

    Text Solution

    |

  11. If log0.3(x-1)ltlog0.09(x-1), then x lies in the interval

    Text Solution

    |

  12. The values of x satisfying x^("log"(5)) gt5 lie in the interval

    Text Solution

    |

  13. The solution set of the equation "log"(x)2 xx "log"(2x)2 = "log"(4x...

    Text Solution

    |

  14. Solve log(0.2). (x+2)/x le 1.

    Text Solution

    |

  15. Solve for x: 5^(log x) + 5x^(log 5) =3 (a>0)

    Text Solution

    |

  16. The number of solutions of "log"("sin"x)(2^(" tan"x)) gt 0 in the inte...

    Text Solution

    |

  17. The set of real values of x for which 2^("log"(sqrt(2))(x-1)) gt x+...

    Text Solution

    |

  18. Find the number of solution to equation log(2)(x+5) = 6 - x:

    Text Solution

    |

  19. The set of values of x for which "log"(e) x gt (x-2)/(x), is

    Text Solution

    |

  20. The number of solutions of the equation 3"log"(3)|-x| = "log"(3) x^(...

    Text Solution

    |