Home
Class 11
MATHS
The value of x^("log"(x) a xx "log"(a)y ...

The value of `x^("log"_(x) a xx "log"_(a)y xx "log"_(y) z)` is

A

x

B

y

C

z

D

a prime number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( x^{\log_{x} a \cdot \log_{a} y \cdot \log_{y} z} \), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula We can express each logarithm in terms of natural logarithms (or common logarithms) using the change of base formula: \[ \log_{b} a = \frac{\log a}{\log b} \] Thus, we can rewrite the expression: \[ \log_{x} a = \frac{\log a}{\log x}, \quad \log_{a} y = \frac{\log y}{\log a}, \quad \log_{y} z = \frac{\log z}{\log y} \] ### Step 2: Substitute the rewritten logarithms into the expression Substituting these into the original expression gives: \[ x^{\frac{\log a}{\log x} \cdot \frac{\log y}{\log a} \cdot \frac{\log z}{\log y}} \] ### Step 3: Simplify the expression Notice that the \(\log a\) in the numerator of \(\log_{x} a\) and the denominator of \(\log_{a} y\) cancels out, as does the \(\log y\) in the numerator of \(\log_{a} y\) and the denominator of \(\log_{y} z\): \[ x^{\frac{\log z}{\log x}} \] ### Step 4: Apply the property of exponents Using the property of exponents, we can rewrite the expression: \[ x^{\frac{\log z}{\log x}} = z^{\log_{x} x} = z^1 \] ### Step 5: Final result Thus, we find that: \[ x^{\log_{x} a \cdot \log_{a} y \cdot \log_{y} z} = z \] ### Conclusion The value of the expression is \( z \). ---

To solve the expression \( x^{\log_{x} a \cdot \log_{a} y \cdot \log_{y} z} \), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula We can express each logarithm in terms of natural logarithms (or common logarithms) using the change of base formula: \[ \log_{b} a = \frac{\log a}{\log b} \] Thus, we can rewrite the expression: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

The solution set of the equation "log"_(x)2 xx "log"_(2x)2 = "log"_(4x) 2, is

The solution set of the equation "log"_(x)2 xx "log"_(2x)2 = "log"_(4x) 2, is

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

Statement-1: If a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8) Statement-2: "log"_(b) a = (1)/("log"_(a)b)

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

If "log"_(3) a xx "log"_(a) x = 4 , then x is equal to

If x gt 0 , y gt 0 , z gt 0 , the least value of x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y) is

If "log"_(a) x xx "log"_(5)a = "log"_(x) 5, a ne 1, a gt 0, " then "x =

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If (1)/("log"(2)a) + (1)/("log"(4)a) + (1)/("log"(8)a) + (1)/("log"(16...

    Text Solution

    |

  2. If "log"(3) a xx "log"(a) x = 4, then x is equal to

    Text Solution

    |

  3. The value of x^("log"(x) a xx "log"(a)y xx "log"(y) z) is

    Text Solution

    |

  4. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |

  5. If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=...

    Text Solution

    |

  6. If loga/(b-c) = logb/(c-a) = logc/(a-b), then a^(b+c).b^(c+a).c^(a+b)...

    Text Solution

    |

  7. Solve log(2)|4-5x| gt 2.

    Text Solution

    |

  8. The sum of the series "log"(4)2-"log"(8)2 + "log"(16)2- "log"(32) 2...

    Text Solution

    |

  9. If log0.3(x-1)ltlog0.09(x-1), then x lies in the interval

    Text Solution

    |

  10. The values of x satisfying x^("log"(5)) gt5 lie in the interval

    Text Solution

    |

  11. The solution set of the equation "log"(x)2 xx "log"(2x)2 = "log"(4x...

    Text Solution

    |

  12. Solve log(0.2). (x+2)/x le 1.

    Text Solution

    |

  13. Solve for x: 5^(log x) + 5x^(log 5) =3 (a>0)

    Text Solution

    |

  14. The number of solutions of "log"("sin"x)(2^(" tan"x)) gt 0 in the inte...

    Text Solution

    |

  15. The set of real values of x for which 2^("log"(sqrt(2))(x-1)) gt x+...

    Text Solution

    |

  16. Find the number of solution to equation log(2)(x+5) = 6 - x:

    Text Solution

    |

  17. The set of values of x for which "log"(e) x gt (x-2)/(x), is

    Text Solution

    |

  18. The number of solutions of the equation 3"log"(3)|-x| = "log"(3) x^(...

    Text Solution

    |

  19. The number of values of x satisfying 1 +"log"(5) (x^(2) + 1) ge "lo...

    Text Solution

    |

  20. The number of ordered pairs (x, y) satisfying 4("log"(2) x^(2))^(2) +...

    Text Solution

    |