Home
Class 11
MATHS
If "log"(ax)x, "log"(bx) x, "log"(cx)x a...

If `"log"_(ax)x, "log"_(bx) x, "log"_(cx)x` are in H.P., where a, b, c, x belong to `(1, oo)`, then a, b, c are in

A

A.P

B

G.P

C

H.P

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( \log_a x, \log_b x, \log_c x \) are in Harmonic Progression (H.P.), then \( a, b, c \) are in Geometric Progression (G.P.). ### Step-by-step Solution: 1. **Understanding H.P. Condition:** Since \( \log_a x, \log_b x, \log_c x \) are in H.P., we can use the property of H.P. which states that for three numbers \( A, B, C \) to be in H.P., the following must hold: \[ 2B = A + C \] Here, let \( A = \log_a x \), \( B = \log_b x \), and \( C = \log_c x \). Thus, we have: \[ 2 \log_b x = \log_a x + \log_c x \] 2. **Using the Change of Base Formula:** We can use the change of base formula for logarithms, which states that: \[ \log_a x = \frac{\log x}{\log a}, \quad \log_b x = \frac{\log x}{\log b}, \quad \log_c x = \frac{\log x}{\log c} \] Substituting these into our equation gives: \[ 2 \cdot \frac{\log x}{\log b} = \frac{\log x}{\log a} + \frac{\log x}{\log c} \] 3. **Simplifying the Equation:** We can factor out \( \log x \) (assuming \( x > 1 \) so \( \log x \neq 0 \)): \[ 2 \cdot \frac{1}{\log b} = \frac{1}{\log a} + \frac{1}{\log c} \] 4. **Finding a Common Denominator:** To combine the right-hand side, we can find a common denominator: \[ 2 \cdot \frac{1}{\log b} = \frac{\log b}{\log a \cdot \log b} + \frac{\log b}{\log c \cdot \log b} \] This simplifies to: \[ 2 \cdot \frac{1}{\log b} = \frac{\log b (\log c + \log a)}{\log a \cdot \log c} \] 5. **Cross-Multiplying:** Cross-multiplying gives: \[ 2 \log a \cdot \log c = \log b (\log a + \log c) \] 6. **Rearranging:** Rearranging this equation leads us to: \[ \log b^2 = \log a \cdot \log c \] This indicates that: \[ b^2 = ac \] 7. **Conclusion:** The equation \( b^2 = ac \) is the condition for \( a, b, c \) to be in Geometric Progression (G.P.). Therefore, we conclude that \( a, b, c \) are in G.P. ### Final Answer: Thus, \( a, b, c \) are in Geometric Progression (G.P.). ---

To solve the problem, we need to show that if \( \log_a x, \log_b x, \log_c x \) are in Harmonic Progression (H.P.), then \( a, b, c \) are in Geometric Progression (G.P.). ### Step-by-step Solution: 1. **Understanding H.P. Condition:** Since \( \log_a x, \log_b x, \log_c x \) are in H.P., we can use the property of H.P. which states that for three numbers \( A, B, C \) to be in H.P., the following must hold: \[ 2B = A + C ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If log_a x, log_b x, log_c x are in A.P then c^2=

The numbers 1/3, 1/3 log _(x) y, 1/3 log _(y) z, 1/7 log _(x) x are in H.P. If y= x ^® and z =x ^(s ), then 4 (r +s)=

If a, b, c are in G.P, then log_a x, log_b x, log_c x are in

If a, b, c are in G.P, then log_a x, log_b x, log_c x are in

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

If a,b,c are in G.P., prove that: log_ax,log_bx,log_cx are in H.P.

Q. If log_x a, a^(x/2) and log_b x are in G.P. then x is equal to (1) log_a(log_b a) (2) log_a(log_e a)+log_a log_b b (3) -log_a(log_a b) (4) none of these

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_(3)x-(log_(3)x)^(2)le(3)/(2)log_((1//2sqrt(2)))4 , then x can belong to (a) (-oo,1//3) (b) (9,oo) (c) (1,6) (d) (-oo,0)

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If "log"(3) a xx "log"(a) x = 4, then x is equal to

    Text Solution

    |

  2. The value of x^("log"(x) a xx "log"(a)y xx "log"(y) z) is

    Text Solution

    |

  3. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |

  4. If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=...

    Text Solution

    |

  5. If loga/(b-c) = logb/(c-a) = logc/(a-b), then a^(b+c).b^(c+a).c^(a+b)...

    Text Solution

    |

  6. Solve log(2)|4-5x| gt 2.

    Text Solution

    |

  7. The sum of the series "log"(4)2-"log"(8)2 + "log"(16)2- "log"(32) 2...

    Text Solution

    |

  8. If log0.3(x-1)ltlog0.09(x-1), then x lies in the interval

    Text Solution

    |

  9. The values of x satisfying x^("log"(5)) gt5 lie in the interval

    Text Solution

    |

  10. The solution set of the equation "log"(x)2 xx "log"(2x)2 = "log"(4x...

    Text Solution

    |

  11. Solve log(0.2). (x+2)/x le 1.

    Text Solution

    |

  12. Solve for x: 5^(log x) + 5x^(log 5) =3 (a>0)

    Text Solution

    |

  13. The number of solutions of "log"("sin"x)(2^(" tan"x)) gt 0 in the inte...

    Text Solution

    |

  14. The set of real values of x for which 2^("log"(sqrt(2))(x-1)) gt x+...

    Text Solution

    |

  15. Find the number of solution to equation log(2)(x+5) = 6 - x:

    Text Solution

    |

  16. The set of values of x for which "log"(e) x gt (x-2)/(x), is

    Text Solution

    |

  17. The number of solutions of the equation 3"log"(3)|-x| = "log"(3) x^(...

    Text Solution

    |

  18. The number of values of x satisfying 1 +"log"(5) (x^(2) + 1) ge "lo...

    Text Solution

    |

  19. The number of ordered pairs (x, y) satisfying 4("log"(2) x^(2))^(2) +...

    Text Solution

    |

  20. The value of (1)/(log(bc)abc)+(1)/(log(ca)abc)+(1)/(log(ab)abc) is equ...

    Text Solution

    |