Home
Class 11
MATHS
If loga/(b-c) = logb/(c-a) = logc/(a-b),...

If `loga/(b-c) = logb/(c-a) = logc/(a-b)`, then `a^(b+c).b^(c+a).c^(a+b)`=

A

`a^(b)b^(c)c^(a)=1`

B

`a^(a)b^(b)c^(c)=1`

C

`root(a)(a) root(b)(b) root(c)(c) = 1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b} = k \] ### Step 1: Express logs in terms of \( k \) From the above equation, we can express the logarithms of \( a \), \( b \), and \( c \) in terms of \( k \): \[ \log a = k(b - c) \quad (1) \] \[ \log b = k(c - a) \quad (2) \] \[ \log c = k(a - b) \quad (3) \] ### Step 2: Add the equations Now, we add equations (1), (2), and (3): \[ \log a + \log b + \log c = k(b - c + c - a + a - b) \] The terms inside the parentheses cancel out: \[ \log a + \log b + \log c = k(0) = 0 \] ### Step 3: Use the property of logarithms Since \( \log a + \log b + \log c = 0 \), we can use the property of logarithms: \[ \log(abc) = 0 \] ### Step 4: Take the antilogarithm Taking the antilogarithm of both sides gives us: \[ abc = e^0 = 1 \] ### Step 5: Find the expression \( a^{(b+c)} \cdot b^{(c+a)} \cdot c^{(a+b)} \) We need to find the value of: \[ a^{(b+c)} \cdot b^{(c+a)} \cdot c^{(a+b)} \] ### Step 6: Rewrite the expression We can rewrite the expression as follows: \[ = a^b \cdot a^c \cdot b^c \cdot b^a \cdot c^a \cdot c^b \] This can be rearranged as: \[ = a^a \cdot b^b \cdot c^c \cdot a^{b+c} \cdot b^{c+a} \cdot c^{a+b} \] ### Step 7: Introduce \( abc \) Now we can multiply and divide by \( a^a \cdot b^b \cdot c^c \): \[ = \frac{a^{(b+c)} \cdot b^{(c+a)} \cdot c^{(a+b)} \cdot a^a \cdot b^b \cdot c^c}{a^a \cdot b^b \cdot c^c} \] ### Step 8: Simplify Since \( abc = 1 \), we have: \[ = \frac{(abc)^{(a+b+c)}}{abc} = \frac{1^{(a+b+c)}}{1} = 1 \] ### Conclusion Thus, the final result is: \[ a^{(b+c)} \cdot b^{(c+a)} \cdot c^{(a+b)} = 1 \]

To solve the problem, we start with the given equation: \[ \frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b} = k \] ### Step 1: Express logs in terms of \( k \) ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

Let (log a)/( b-c) = (logb)/(c-a) = (log c)/(a-b) STATEMENT 1: a^(a) b^(b) c^(c) = 1 STATEMENT 2: a^(b+c) b^(c +a) c^(a + b) = 1

a(b-c) +b(c - a) +c(a-b) is equal to

if x =log_a (bc), y= log_b (ca) and z=log_c(ab) then 1/(x+1)+1/(y+1)+1/(z+1)

If log_a x, log_b x, log_c x are in A.P then c^2=

Simplify: a(b-c)-b(c-a)-c(a-b)

Simplify: a(b-c)+b(c-a)+c(a-b)

If a, b, c are in HP., then a/(b+c),b/(c+a),c/(a+b) are in

If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

If a,b,c are in G.P then (b-a)/(b-c)+(b+a)/(b+c)=

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If "log"(ax)x, "log"(bx) x, "log"(cx)x are in H.P., where a, b, c, x b...

    Text Solution

    |

  2. If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=...

    Text Solution

    |

  3. If loga/(b-c) = logb/(c-a) = logc/(a-b), then a^(b+c).b^(c+a).c^(a+b)...

    Text Solution

    |

  4. Solve log(2)|4-5x| gt 2.

    Text Solution

    |

  5. The sum of the series "log"(4)2-"log"(8)2 + "log"(16)2- "log"(32) 2...

    Text Solution

    |

  6. If log0.3(x-1)ltlog0.09(x-1), then x lies in the interval

    Text Solution

    |

  7. The values of x satisfying x^("log"(5)) gt5 lie in the interval

    Text Solution

    |

  8. The solution set of the equation "log"(x)2 xx "log"(2x)2 = "log"(4x...

    Text Solution

    |

  9. Solve log(0.2). (x+2)/x le 1.

    Text Solution

    |

  10. Solve for x: 5^(log x) + 5x^(log 5) =3 (a>0)

    Text Solution

    |

  11. The number of solutions of "log"("sin"x)(2^(" tan"x)) gt 0 in the inte...

    Text Solution

    |

  12. The set of real values of x for which 2^("log"(sqrt(2))(x-1)) gt x+...

    Text Solution

    |

  13. Find the number of solution to equation log(2)(x+5) = 6 - x:

    Text Solution

    |

  14. The set of values of x for which "log"(e) x gt (x-2)/(x), is

    Text Solution

    |

  15. The number of solutions of the equation 3"log"(3)|-x| = "log"(3) x^(...

    Text Solution

    |

  16. The number of values of x satisfying 1 +"log"(5) (x^(2) + 1) ge "lo...

    Text Solution

    |

  17. The number of ordered pairs (x, y) satisfying 4("log"(2) x^(2))^(2) +...

    Text Solution

    |

  18. The value of (1)/(log(bc)abc)+(1)/(log(ca)abc)+(1)/(log(ab)abc) is equ...

    Text Solution

    |

  19. Complete set of solution of log (1//3) (2 ^(x +2) - 4 ^(x)) ge -2 is :

    Text Solution

    |

  20. The value of e^("log"(e) x+ "log"(sqrt(e)) x+ "log"(root(3)(e)) x +...

    Text Solution

    |