Home
Class 11
MATHS
The number of values of x satisfying ...

The number of values of x satisfying
` 1 +"log"_(5) (x^(2) + 1) ge "log"_(5) (x^(2) + 4x +1)`, is

A

1

B

2

C

3

D

infinitely many

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ 1 + \log_5(x^2 + 1) \geq \log_5(x^2 + 4x + 1), \] we will follow these steps: ### Step 1: Rewrite the inequality We can rewrite the inequality using properties of logarithms. Since \(1 = \log_5(5)\), we can express the left side as: \[ \log_5(5) + \log_5(x^2 + 1) \geq \log_5(x^2 + 4x + 1). \] Using the property \(\log_a(b) + \log_a(c) = \log_a(bc)\), we can combine the left side: \[ \log_5(5(x^2 + 1)) \geq \log_5(x^2 + 4x + 1). \] ### Step 2: Remove the logarithm Since the logarithm function is increasing, we can remove the logarithm (assuming both sides are defined and positive): \[ 5(x^2 + 1) \geq x^2 + 4x + 1. \] ### Step 3: Simplify the inequality Now, we simplify the inequality: \[ 5x^2 + 5 \geq x^2 + 4x + 1. \] Subtract \(x^2 + 4x + 1\) from both sides: \[ 5x^2 - x^2 - 4x + 5 - 1 \geq 0, \] which simplifies to: \[ 4x^2 - 4x + 4 \geq 0. \] ### Step 4: Factor the quadratic We can factor out a 4 from the left-hand side: \[ 4(x^2 - x + 1) \geq 0. \] Dividing both sides by 4 (which does not change the direction of the inequality): \[ x^2 - x + 1 \geq 0. \] ### Step 5: Analyze the quadratic Next, we will find the roots of the quadratic equation \(x^2 - x + 1 = 0\) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2}. \] Since the discriminant is negative (\(-3\)), this quadratic has no real roots, meaning it does not cross the x-axis. ### Step 6: Determine the sign of the quadratic Since the coefficient of \(x^2\) is positive, the quadratic \(x^2 - x + 1\) is always positive for all real \(x\): \[ x^2 - x + 1 > 0 \quad \text{for all } x \in \mathbb{R}. \] ### Step 7: Check the domain of the logarithm Next, we need to ensure that the expressions inside the logarithms are positive: 1. \(x^2 + 1 > 0\) is always true for all real \(x\). 2. \(x^2 + 4x + 1 > 0\) needs to be checked. The roots are: \[ x = \frac{-4 \pm \sqrt{16 - 4}}{2} = \frac{-4 \pm \sqrt{12}}{2} = -2 \pm \sqrt{3}. \] This quadratic is positive outside the interval \((-2 - \sqrt{3}, -2 + \sqrt{3})\). ### Step 8: Final solution Thus, the solution set for \(x\) is: \[ (-\infty, -2 - \sqrt{3}) \cup (-2 + \sqrt{3}, \infty). \] Since there are infinitely many values of \(x\) in these intervals, the answer is: **Infinitely many values of \(x\)**.

To solve the inequality \[ 1 + \log_5(x^2 + 1) \geq \log_5(x^2 + 4x + 1), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The number of value(s) of x satisfying 1-log_(3)(x+1)^(2)=1/2log_(sqrt(3))((x+5)/(x+3)) is

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

The number of values of x satisfying 2^(log_5 16. log_4 x +x log_2 5) + 5^x + x^((log_5 4)+5) + x^5 = 0

The values of x satisfying x^("log"_(5)) gt5 lie in the interval

The number of ordered pairs (x, y) satisfying 4("log"_(2) x^(2))^(2) + 1 = 2 "log"_(2)y " and log"_(2)x^(2) ge "log"_(2) y , is

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Number of integral values of x satisfying function f(x)=log(x-1)+log(3-x)

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. The set of values of x for which "log"(e) x gt (x-2)/(x), is

    Text Solution

    |

  2. The number of solutions of the equation 3"log"(3)|-x| = "log"(3) x^(...

    Text Solution

    |

  3. The number of values of x satisfying 1 +"log"(5) (x^(2) + 1) ge "lo...

    Text Solution

    |

  4. The number of ordered pairs (x, y) satisfying 4("log"(2) x^(2))^(2) +...

    Text Solution

    |

  5. The value of (1)/(log(bc)abc)+(1)/(log(ca)abc)+(1)/(log(ab)abc) is equ...

    Text Solution

    |

  6. Complete set of solution of log (1//3) (2 ^(x +2) - 4 ^(x)) ge -2 is :

    Text Solution

    |

  7. The value of e^("log"(e) x+ "log"(sqrt(e)) x+ "log"(root(3)(e)) x +...

    Text Solution

    |

  8. IF x=198! then value of the expression 1/(log2x)+1/(log3x)+...+1/(log1...

    Text Solution

    |

  9. If [.] denotes the greatest integer function, then thevalue of natura...

    Text Solution

    |

  10. The set of real values of x satisfying log(1/2) (x^2-6x+12)>=-2

    Text Solution

    |

  11. If log(0.04) (x-1)>=log(0.2) (x-1) then x belongs to the interval

    Text Solution

    |

  12. If "log"(a) x xx "log"(5)a = "log"(x) 5, a ne 1, a gt 0, " then "x =

    Text Solution

    |

  13. If log(0.5) sin x=1-log(0.5) cos x, then number of values of x in [-2p...

    Text Solution

    |

  14. If x1,x2,x3,... are positive numbers in G.P then logxn, logx(n+1), log...

    Text Solution

    |

  15. If log (cos x ) sin ge 2 and 0 le x le 3pi then sin x lies in the inte...

    Text Solution

    |

  16. The number of values of x in [0,npi] ,n in Z that satisfy the equati...

    Text Solution

    |

  17. Number of integral values of x which satisfying the equation, 9^(log(...

    Text Solution

    |

  18. If x^({(3)/(4)("log"(3)x)^(2) + ("log"(3)x)-(5)/(4)}) = sqrt(3), then ...

    Text Solution

    |

  19. If "log"("cos"x) "tan" x + "log"("sin"x) "cot" x =0, then x =

    Text Solution

    |

  20. The number of solutions of the equation x^("log"sqrt(x)^(2x)) =4 is

    Text Solution

    |