Home
Class 11
MATHS
The value of e^("log"(e) x+ "log"(sqr...

The value of
`e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x),` is

A

`x^(10)`

B

e

C

`x^(55)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( e^{\log_e x + \log_{\sqrt{e}} x + \log_{\sqrt[3]{e}} x + \ldots + \log_{\sqrt[10]{e}} x} \), we will follow these steps: ### Step 1: Rewrite the logarithms with a common base The expression consists of logarithms with different bases. We can convert all of them to a common base, which is \( e \). \[ \log_{\sqrt{e}} x = \frac{\log_e x}{\log_e \sqrt{e}} = \frac{\log_e x}{\frac{1}{2}} = 2 \log_e x \] \[ \log_{\sqrt[3]{e}} x = \frac{\log_e x}{\log_e \sqrt[3]{e}} = \frac{\log_e x}{\frac{1}{3}} = 3 \log_e x \] \[ \log_{\sqrt[4]{e}} x = \frac{\log_e x}{\log_e \sqrt[4]{e}} = \frac{\log_e x}{\frac{1}{4}} = 4 \log_e x \] Continuing this way, we can express all logarithms up to \( \log_{\sqrt[10]{e}} x \). ### Step 2: Write the complete expression Now we can write the complete expression as: \[ e^{\log_e x + 2 \log_e x + 3 \log_e x + 4 \log_e x + 5 \log_e x + 6 \log_e x + 7 \log_e x + 8 \log_e x + 9 \log_e x + 10 \log_e x} \] ### Step 3: Factor out \( \log_e x \) Factoring out \( \log_e x \): \[ e^{(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) \log_e x} \] ### Step 4: Calculate the sum of the series The sum \( 1 + 2 + 3 + \ldots + 10 \) can be calculated using the formula for the sum of the first \( n \) natural numbers: \[ \text{Sum} = \frac{n(n + 1)}{2} = \frac{10(10 + 1)}{2} = \frac{10 \times 11}{2} = 55 \] ### Step 5: Substitute back into the expression Now substituting back into the expression, we have: \[ e^{55 \log_e x} \] ### Step 6: Simplify using properties of exponents and logarithms Using the property \( e^{\log_e a} = a \): \[ e^{55 \log_e x} = x^{55} \] ### Final Answer Thus, the value of the expression is: \[ \boxed{x^{55}} \] ---

To solve the expression \( e^{\log_e x + \log_{\sqrt{e}} x + \log_{\sqrt[3]{e}} x + \ldots + \log_{\sqrt[10]{e}} x} \), we will follow these steps: ### Step 1: Rewrite the logarithms with a common base The expression consists of logarithms with different bases. We can convert all of them to a common base, which is \( e \). \[ \log_{\sqrt{e}} x = \frac{\log_e x}{\log_e \sqrt{e}} = \frac{\log_e x}{\frac{1}{2}} = 2 \log_e x \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Write a value of int(log)_e x\ dx

int " log"_(e) " x dx "

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

The value of log_(3) e- log_(9) e + log_(27) e- log_(81) e+…infty is

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

Evaluate : int (e^("log x "))/(x) " dx "

The equation "log"_(e)x + "log"_(e)(1+x) =0 can be written as

If log_(e) x = s and log_(e) , y = t , then log_(e)(xy)^(2) = ?

The value of integral int_(1)^(e) (log x)^(3)dx , is

Write a value of int(e^(x(log)_e a)+e^(a(log)_e x))\ dx

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. The value of (1)/(log(bc)abc)+(1)/(log(ca)abc)+(1)/(log(ab)abc) is equ...

    Text Solution

    |

  2. Complete set of solution of log (1//3) (2 ^(x +2) - 4 ^(x)) ge -2 is :

    Text Solution

    |

  3. The value of e^("log"(e) x+ "log"(sqrt(e)) x+ "log"(root(3)(e)) x +...

    Text Solution

    |

  4. IF x=198! then value of the expression 1/(log2x)+1/(log3x)+...+1/(log1...

    Text Solution

    |

  5. If [.] denotes the greatest integer function, then thevalue of natura...

    Text Solution

    |

  6. The set of real values of x satisfying log(1/2) (x^2-6x+12)>=-2

    Text Solution

    |

  7. If log(0.04) (x-1)>=log(0.2) (x-1) then x belongs to the interval

    Text Solution

    |

  8. If "log"(a) x xx "log"(5)a = "log"(x) 5, a ne 1, a gt 0, " then "x =

    Text Solution

    |

  9. If log(0.5) sin x=1-log(0.5) cos x, then number of values of x in [-2p...

    Text Solution

    |

  10. If x1,x2,x3,... are positive numbers in G.P then logxn, logx(n+1), log...

    Text Solution

    |

  11. If log (cos x ) sin ge 2 and 0 le x le 3pi then sin x lies in the inte...

    Text Solution

    |

  12. The number of values of x in [0,npi] ,n in Z that satisfy the equati...

    Text Solution

    |

  13. Number of integral values of x which satisfying the equation, 9^(log(...

    Text Solution

    |

  14. If x^({(3)/(4)("log"(3)x)^(2) + ("log"(3)x)-(5)/(4)}) = sqrt(3), then ...

    Text Solution

    |

  15. If "log"("cos"x) "tan" x + "log"("sin"x) "cot" x =0, then x =

    Text Solution

    |

  16. The number of solutions of the equation x^("log"sqrt(x)^(2x)) =4 is

    Text Solution

    |

  17. If "log"(sqrt(3))("sin" x + 2sqrt(2) "cos"x) ge 2, -2pi le x le 2 pi, ...

    Text Solution

    |

  18. The least value of the expression 2(log)(10)x-(log)x(0, 01)dot for x >...

    Text Solution

    |

  19. The number of zeroes coming immediately after the decimal point in the...

    Text Solution

    |

  20. If log(1/sqrt2) sinx> 0 ,x in [0,4pi], then the number values of x wh...

    Text Solution

    |