Home
Class 11
MATHS
The set of real values of x satisfying l...

The set of real values of `x` satisfying `log_(1/2) (x^2-6x+12)>=-2`

A

`(-oo, 2]`

B

`[2, 4]`

C

`[4, oo)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_{\frac{1}{2}} (x^2 - 6x + 12) \geq -2 \), we will follow these steps: ### Step 1: Convert the logarithmic inequality to exponential form Using the property of logarithms, if \( \log_b(a) = c \), then \( a = b^c \). Here, we have: \[ x^2 - 6x + 12 \geq \left(\frac{1}{2}\right)^{-2} \] Calculating \( \left(\frac{1}{2}\right)^{-2} \): \[ \left(\frac{1}{2}\right)^{-2} = 2^2 = 4 \] Thus, the inequality becomes: \[ x^2 - 6x + 12 \geq 4 \] ### Step 2: Rearrange the inequality Now, we rearrange the inequality: \[ x^2 - 6x + 12 - 4 \geq 0 \] This simplifies to: \[ x^2 - 6x + 8 \geq 0 \] ### Step 3: Factor the quadratic expression Next, we factor the quadratic expression: \[ x^2 - 6x + 8 = (x - 2)(x - 4) \] So, we rewrite the inequality as: \[ (x - 2)(x - 4) \geq 0 \] ### Step 4: Find the critical points The critical points of the expression are \( x = 2 \) and \( x = 4 \). These points will help us determine the intervals to test. ### Step 5: Test the intervals We will test the intervals determined by the critical points \( x = 2 \) and \( x = 4 \): 1. **Interval \( (-\infty, 2) \)**: Choose \( x = 0 \) \[ (0 - 2)(0 - 4) = ( -2)( -4) = 8 \quad (\text{positive}) \] 2. **Interval \( (2, 4) \)**: Choose \( x = 3 \) \[ (3 - 2)(3 - 4) = (1)(-1) = -1 \quad (\text{negative}) \] 3. **Interval \( (4, \infty) \)**: Choose \( x = 5 \) \[ (5 - 2)(5 - 4) = (3)(1) = 3 \quad (\text{positive}) \] ### Step 6: Determine the solution set From our tests, we find: - The expression is non-negative in the intervals \( (-\infty, 2] \) and \( [4, \infty) \). ### Final Solution Thus, the solution set for the inequality \( \log_{\frac{1}{2}} (x^2 - 6x + 12) \geq -2 \) is: \[ x \in (-\infty, 2] \cup [4, \infty) \]

To solve the inequality \( \log_{\frac{1}{2}} (x^2 - 6x + 12) \geq -2 \), we will follow these steps: ### Step 1: Convert the logarithmic inequality to exponential form Using the property of logarithms, if \( \log_b(a) = c \), then \( a = b^c \). Here, we have: \[ x^2 - 6x + 12 \geq \left(\frac{1}{2}\right)^{-2} \] Calculating \( \left(\frac{1}{2}\right)^{-2} \): ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The set of real values of x satisfying ||x-1|-1|le 1 , is

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

The set of real values of x satisfying the inequality |x^(2) + x -6| lt 6 , is

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

The number of values of x satisfying 1 +"log"_(5) (x^(2) + 1) ge "log"_(5) (x^(2) + 4x +1) , is

The set of values of x satisfying |(x^(2)-5x+4)/(x^(2)-4)| le 1 is

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The number of value(s) of x satisfying 1-log_(3)(x+1)^(2)=1/2log_(sqrt(3))((x+5)/(x+3)) is

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. IF x=198! then value of the expression 1/(log2x)+1/(log3x)+...+1/(log1...

    Text Solution

    |

  2. If [.] denotes the greatest integer function, then thevalue of natura...

    Text Solution

    |

  3. The set of real values of x satisfying log(1/2) (x^2-6x+12)>=-2

    Text Solution

    |

  4. If log(0.04) (x-1)>=log(0.2) (x-1) then x belongs to the interval

    Text Solution

    |

  5. If "log"(a) x xx "log"(5)a = "log"(x) 5, a ne 1, a gt 0, " then "x =

    Text Solution

    |

  6. If log(0.5) sin x=1-log(0.5) cos x, then number of values of x in [-2p...

    Text Solution

    |

  7. If x1,x2,x3,... are positive numbers in G.P then logxn, logx(n+1), log...

    Text Solution

    |

  8. If log (cos x ) sin ge 2 and 0 le x le 3pi then sin x lies in the inte...

    Text Solution

    |

  9. The number of values of x in [0,npi] ,n in Z that satisfy the equati...

    Text Solution

    |

  10. Number of integral values of x which satisfying the equation, 9^(log(...

    Text Solution

    |

  11. If x^({(3)/(4)("log"(3)x)^(2) + ("log"(3)x)-(5)/(4)}) = sqrt(3), then ...

    Text Solution

    |

  12. If "log"("cos"x) "tan" x + "log"("sin"x) "cot" x =0, then x =

    Text Solution

    |

  13. The number of solutions of the equation x^("log"sqrt(x)^(2x)) =4 is

    Text Solution

    |

  14. If "log"(sqrt(3))("sin" x + 2sqrt(2) "cos"x) ge 2, -2pi le x le 2 pi, ...

    Text Solution

    |

  15. The least value of the expression 2(log)(10)x-(log)x(0, 01)dot for x >...

    Text Solution

    |

  16. The number of zeroes coming immediately after the decimal point in the...

    Text Solution

    |

  17. If log(1/sqrt2) sinx> 0 ,x in [0,4pi], then the number values of x wh...

    Text Solution

    |

  18. The value of sum(r=1)^(89)log(10)(tan((pir)/180)) is equal to

    Text Solution

    |

  19. If [x] denotes the greatest integer less than or equal to x, then ["lo...

    Text Solution

    |

  20. If a(n) gt a(n-1) gt …. gt a(2) gt a(1) gt 1, then the value of "log"(...

    Text Solution

    |