Home
Class 11
MATHS
The value of sum(r=1)^(89)log(10)(tan((p...

The value of `sum_(r=1)^(89)log_(10)(tan((pir)/180))` is equal to

A

10

B

1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ y = \sum_{r=1}^{89} \log_{10} \left( \tan\left(\frac{\pi r}{180}\right) \right) \] ### Step 1: Rewrite the Summation We can use the property of logarithms that states \(\log(a) + \log(b) = \log(ab)\). Therefore, we can rewrite the summation as: \[ y = \log_{10} \left( \prod_{r=1}^{89} \tan\left(\frac{\pi r}{180}\right) \right) \] **Hint:** Remember that the logarithm of a product is the sum of the logarithms. ### Step 2: Analyze the Tangent Function Notice that \(\tan\left(\frac{\pi r}{180}\right)\) has a symmetry property. Specifically, we have: \[ \tan\left(\frac{\pi (90 - r)}{180}\right) = \cot\left(\frac{\pi r}{180}\right) \] This means that for every \(r\) from 1 to 89, there is a corresponding \(90 - r\) such that: \[ \tan\left(\frac{\pi r}{180}\right) \cdot \tan\left(\frac{\pi (90 - r)}{180}\right) = 1 \] **Hint:** Look for pairs in the summation that can simplify the product. ### Step 3: Group the Terms We can group the terms in pairs: \[ \tan\left(\frac{\pi r}{180}\right) \cdot \tan\left(\frac{\pi (90 - r)}{180}\right) = 1 \] This means that for \(r = 1\) to \(44\), each pair contributes a product of 1. The middle term when \(r = 45\) is: \[ \tan\left(\frac{\pi \cdot 45}{180}\right) = \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, the entire product simplifies to: \[ \prod_{r=1}^{89} \tan\left(\frac{\pi r}{180}\right) = 1 \] **Hint:** Consider how symmetry in the tangent function can help simplify the product. ### Step 4: Substitute Back into the Logarithm Now substituting back into the logarithm, we have: \[ y = \log_{10}(1) = 0 \] **Hint:** Remember that the logarithm of 1 in any base is always 0. ### Final Answer Thus, the value of the summation is: \[ \boxed{0} \]

To solve the problem, we need to evaluate the summation: \[ y = \sum_{r=1}^{89} \log_{10} \left( \tan\left(\frac{\pi r}{180}\right) \right) \] ### Step 1: Rewrite the Summation We can use the property of logarithms that states \(\log(a) + \log(b) = \log(ab)\). Therefore, we can rewrite the summation as: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Find the value of sum _(r=1)^(89) "log"_(10) "cot" (pir)/(180)

The value of sum_(r=1)^(n)log((a^(r))/(b^(r-1))) , is

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=1)^oocot^(- 1)((r^2)/2+15/8) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

If a_(1),a_(2),a_(3),……a_(87),a_(88),a_(89) are the arithmetic means between 1 and 89 , then sum_(r=1)^(89)log(tan(a_(r ))^(@)) is equal to

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum _(r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

The value sum_(r=0)^(7)tan^(2)""(pix)/(16) is equal to :

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If x1,x2,x3,... are positive numbers in G.P then logxn, logx(n+1), log...

    Text Solution

    |

  2. If log (cos x ) sin ge 2 and 0 le x le 3pi then sin x lies in the inte...

    Text Solution

    |

  3. The number of values of x in [0,npi] ,n in Z that satisfy the equati...

    Text Solution

    |

  4. Number of integral values of x which satisfying the equation, 9^(log(...

    Text Solution

    |

  5. If x^({(3)/(4)("log"(3)x)^(2) + ("log"(3)x)-(5)/(4)}) = sqrt(3), then ...

    Text Solution

    |

  6. If "log"("cos"x) "tan" x + "log"("sin"x) "cot" x =0, then x =

    Text Solution

    |

  7. The number of solutions of the equation x^("log"sqrt(x)^(2x)) =4 is

    Text Solution

    |

  8. If "log"(sqrt(3))("sin" x + 2sqrt(2) "cos"x) ge 2, -2pi le x le 2 pi, ...

    Text Solution

    |

  9. The least value of the expression 2(log)(10)x-(log)x(0, 01)dot for x >...

    Text Solution

    |

  10. The number of zeroes coming immediately after the decimal point in the...

    Text Solution

    |

  11. If log(1/sqrt2) sinx> 0 ,x in [0,4pi], then the number values of x wh...

    Text Solution

    |

  12. The value of sum(r=1)^(89)log(10)(tan((pir)/180)) is equal to

    Text Solution

    |

  13. If [x] denotes the greatest integer less than or equal to x, then ["lo...

    Text Solution

    |

  14. If a(n) gt a(n-1) gt …. gt a(2) gt a(1) gt 1, then the value of "log"(...

    Text Solution

    |

  15. If n=1999! then sum(x=1)^(1999) logn x=

    Text Solution

    |

  16. Let a=(log)3(log)3 2. An integer k satisfying 1<2^(-k+3^((-a)))<2, mus...

    Text Solution

    |

  17. If log(10) (x^3+y^3)-log(10) (x^2+y^2-xy) <=2 then the minimum value o...

    Text Solution

    |

  18. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  19. If 3^x = 4^(x-1) then x can not be equal to

    Text Solution

    |

  20. For the system of equation "log"(10) (x^(3)-x^(2)) = "log"(5)y^(2) ...

    Text Solution

    |