Home
Class 11
MATHS
If a(n) gt a(n-1) gt …. gt a(2) gt a(1) ...

If `a_(n) gt a_(n-1) gt …. gt a_(2) gt a_(1) gt 1`, then the value of `"log"_(a_(1))"log"_(a_(2)) "log"_(a_(3))…."log"_(a_(n))` is equal to

A

0

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition: 1. **Given Condition**: \( a_n > a_{n-1} > \ldots > a_2 > a_1 > 1 \) We need to find the value of: \[ \log_{a_1}(\log_{a_2}(\log_{a_3}(\ldots(\log_{a_n}(x))\ldots))) \] where \( x \) is some expression that we will determine. ### Step 1: Understanding the logarithmic expression We can rewrite the expression as follows: \[ \log_{a_1}(\log_{a_2}(\log_{a_3}(\ldots(\log_{a_n}(x))\ldots))) \] ### Step 2: Evaluating the innermost logarithm Let's evaluate the innermost logarithm, \( \log_{a_n}(x) \). Since \( a_n > 1 \), we can choose \( x = a_n \): \[ \log_{a_n}(a_n) = 1 \] ### Step 3: Moving to the next logarithm Now, we substitute this back into the next logarithm: \[ \log_{a_{n-1}}(1) \] Since \( a_{n-1} > 1 \): \[ \log_{a_{n-1}}(1) = 0 \] ### Step 4: Continuing the process Now, we substitute this into the next logarithm: \[ \log_{a_{n-2}}(0) \] However, the logarithm of zero is undefined. Therefore, we need to be careful about the values we choose. ### Step 5: Generalizing the pattern Continuing this pattern, we see that: - \( \log_{a_n}(a_n) = 1 \) - \( \log_{a_{n-1}}(1) = 0 \) - \( \log_{a_{n-2}}(0) \) is undefined. Thus, we can conclude that the entire expression evaluates to **undefined** due to the logarithm of zero. ### Final Conclusion The value of \( \log_{a_1}(\log_{a_2}(\log_{a_3}(\ldots(\log_{a_n}(x))\ldots))) \) is undefined. ---

To solve the problem, we start with the given condition: 1. **Given Condition**: \( a_n > a_{n-1} > \ldots > a_2 > a_1 > 1 \) We need to find the value of: \[ \log_{a_1}(\log_{a_2}(\log_{a_3}(\ldots(\log_{a_n}(x))\ldots))) ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If a_1, a_2, a_3,....... are in G.P. then the value of determinant |(log(a_n), log(a_(n+1)), log(a_(n+2))), (log(a_(n+3)), log(a_(n+4)), log(a_(n+5))), (log(a_(n+6)), log(a_(n+7)), log(a_(n+8)))| equals (A) 0 (B) 1 (C) 2 (D) 3

If a_(1), a_(2),….,a_(n) are n(gt1) real numbers, then

If a_(0) = 0.4 and a_(n+1) = 2|a_(n)|-1 , then a_(5) =

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

If a_(i) gt 0 AA I in N such that prod_(i=1)^(n) a_(i) = 1 , then prove that (1 + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)

If a_(1)=5 and a_(n)=1+sqrt(a_(n-1)), find a_(3) .

Statement I If A gt 0 , B gt 0 and A+B= pi/3 , then the maximum value of tan A tan B is 1/3 . Statement II If a_(1)+a_(2)+a_(3)+...+a_(n)=k (constant), then the value a_(1)a_(2)a_(3)...a_(n) is greatest when a_(1)=a_(2)=a_(3)=...+a_(n)

If a_(n+1)=a_(n-1)+2a_(n) for n=2,3,4, . . . and a_(1)=1 and a_(2)=1 , then a_(5) =

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If x1,x2,x3,... are positive numbers in G.P then logxn, logx(n+1), log...

    Text Solution

    |

  2. If log (cos x ) sin ge 2 and 0 le x le 3pi then sin x lies in the inte...

    Text Solution

    |

  3. The number of values of x in [0,npi] ,n in Z that satisfy the equati...

    Text Solution

    |

  4. Number of integral values of x which satisfying the equation, 9^(log(...

    Text Solution

    |

  5. If x^({(3)/(4)("log"(3)x)^(2) + ("log"(3)x)-(5)/(4)}) = sqrt(3), then ...

    Text Solution

    |

  6. If "log"("cos"x) "tan" x + "log"("sin"x) "cot" x =0, then x =

    Text Solution

    |

  7. The number of solutions of the equation x^("log"sqrt(x)^(2x)) =4 is

    Text Solution

    |

  8. If "log"(sqrt(3))("sin" x + 2sqrt(2) "cos"x) ge 2, -2pi le x le 2 pi, ...

    Text Solution

    |

  9. The least value of the expression 2(log)(10)x-(log)x(0, 01)dot for x >...

    Text Solution

    |

  10. The number of zeroes coming immediately after the decimal point in the...

    Text Solution

    |

  11. If log(1/sqrt2) sinx> 0 ,x in [0,4pi], then the number values of x wh...

    Text Solution

    |

  12. The value of sum(r=1)^(89)log(10)(tan((pir)/180)) is equal to

    Text Solution

    |

  13. If [x] denotes the greatest integer less than or equal to x, then ["lo...

    Text Solution

    |

  14. If a(n) gt a(n-1) gt …. gt a(2) gt a(1) gt 1, then the value of "log"(...

    Text Solution

    |

  15. If n=1999! then sum(x=1)^(1999) logn x=

    Text Solution

    |

  16. Let a=(log)3(log)3 2. An integer k satisfying 1<2^(-k+3^((-a)))<2, mus...

    Text Solution

    |

  17. If log(10) (x^3+y^3)-log(10) (x^2+y^2-xy) <=2 then the minimum value o...

    Text Solution

    |

  18. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  19. If 3^x = 4^(x-1) then x can not be equal to

    Text Solution

    |

  20. For the system of equation "log"(10) (x^(3)-x^(2)) = "log"(5)y^(2) ...

    Text Solution

    |