Home
Class 11
MATHS
If n=1999! then sum(x=1)^(1999) logn x=...

If `n=1999!` then `sum_(x=1)^(1999) log_n x=`

A

1

B

0

C

`root(1999)(1999)`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{x=1}^{1999} \log_n x \) where \( n = 1999! \), we can follow these steps: ### Step 1: Rewrite the Summation We start with the summation: \[ \sum_{x=1}^{1999} \log_n x = \log_n 1 + \log_n 2 + \log_n 3 + \ldots + \log_n 1999 \] ### Step 2: Use the Property of Logarithms Using the property of logarithms that states \( \log_a b + \log_a c = \log_a (bc) \), we can combine the terms: \[ \sum_{x=1}^{1999} \log_n x = \log_n (1 \cdot 2 \cdot 3 \cdots \cdot 1999) = \log_n (1999!) \] ### Step 3: Substitute \( n \) Since we know that \( n = 1999! \), we can substitute \( n \) into the logarithm: \[ \log_n (1999!) = \log_{1999!} (1999!) \] ### Step 4: Apply the Logarithm Identity Using the identity \( \log_a a = 1 \), we find: \[ \log_{1999!} (1999!) = 1 \] ### Conclusion Thus, the value of the summation \( \sum_{x=1}^{1999} \log_n x \) is: \[ \boxed{1} \]

To solve the problem \( \sum_{x=1}^{1999} \log_n x \) where \( n = 1999! \), we can follow these steps: ### Step 1: Rewrite the Summation We start with the summation: \[ \sum_{x=1}^{1999} \log_n x = \log_n 1 + \log_n 2 + \log_n 3 + \ldots + \log_n 1999 \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

sum_(n=0)^(oo) ((log_ex)^n)/(n!)

Statement:1: If sum _(r=1)^(n) sin(x_(r)) = n , then sum_(n=1)^(n) cot (x_(r)) =n . And Statement-2: The number of solutions of the equation cosx =x is 1.

Q. if x_1,x_2......x_n are in H.P ., then sum_(r=1)^n x_r x_(r+1) is equal to : (A) (n-1)x_1 x_n (B) n x_1 x_n (C) (n+1)x_1 x_n (D) (n+2)x_1 x_n

Given that lim_(nto oo) sum_(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1)/(2)) , lim_(n to oo) [(1)/(n^k)[(n+1)^k(n+2)^k.....(n+n)^k]]^(1//n) , is

Let n in N, f(n)={(log_(8)n" if "log_(8)n " is integer"),(0" otherwise"):} , then the valud of sum_(n=1)^(2011) f(n) is :

A derivable function f : R^(+) rarr R satisfies the condition f(x) - f(y) ge log((x)/(y)) + x - y, AA x, y in R^(+) . If g denotes the derivative of f, then the value of the sum sum_(n=1)^(100) g((1)/(n)) is

If (1+ i sqrt(3))^(1999)=a+ib , then

If h(x)=log_(10)x, then the value of sum_(n=1)^(89) h"("tan^(Omega)")"=

The standard deviation of n observations x_(1), x_(2), x_(3),…x_(n) is 2. If sum_(i=1)^(n) x_(i)^(2) = 100 and sum_(i=1)^(n) x_(i) = 20 show the values of n are 5 or 20

Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then the value of sum_(n=1)^100 f(n) is

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Section I - Solved Mcqs
  1. If x1,x2,x3,... are positive numbers in G.P then logxn, logx(n+1), log...

    Text Solution

    |

  2. If log (cos x ) sin ge 2 and 0 le x le 3pi then sin x lies in the inte...

    Text Solution

    |

  3. The number of values of x in [0,npi] ,n in Z that satisfy the equati...

    Text Solution

    |

  4. Number of integral values of x which satisfying the equation, 9^(log(...

    Text Solution

    |

  5. If x^({(3)/(4)("log"(3)x)^(2) + ("log"(3)x)-(5)/(4)}) = sqrt(3), then ...

    Text Solution

    |

  6. If "log"("cos"x) "tan" x + "log"("sin"x) "cot" x =0, then x =

    Text Solution

    |

  7. The number of solutions of the equation x^("log"sqrt(x)^(2x)) =4 is

    Text Solution

    |

  8. If "log"(sqrt(3))("sin" x + 2sqrt(2) "cos"x) ge 2, -2pi le x le 2 pi, ...

    Text Solution

    |

  9. The least value of the expression 2(log)(10)x-(log)x(0, 01)dot for x >...

    Text Solution

    |

  10. The number of zeroes coming immediately after the decimal point in the...

    Text Solution

    |

  11. If log(1/sqrt2) sinx> 0 ,x in [0,4pi], then the number values of x wh...

    Text Solution

    |

  12. The value of sum(r=1)^(89)log(10)(tan((pir)/180)) is equal to

    Text Solution

    |

  13. If [x] denotes the greatest integer less than or equal to x, then ["lo...

    Text Solution

    |

  14. If a(n) gt a(n-1) gt …. gt a(2) gt a(1) gt 1, then the value of "log"(...

    Text Solution

    |

  15. If n=1999! then sum(x=1)^(1999) logn x=

    Text Solution

    |

  16. Let a=(log)3(log)3 2. An integer k satisfying 1<2^(-k+3^((-a)))<2, mus...

    Text Solution

    |

  17. If log(10) (x^3+y^3)-log(10) (x^2+y^2-xy) <=2 then the minimum value o...

    Text Solution

    |

  18. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  19. If 3^x = 4^(x-1) then x can not be equal to

    Text Solution

    |

  20. For the system of equation "log"(10) (x^(3)-x^(2)) = "log"(5)y^(2) ...

    Text Solution

    |