Home
Class 11
MATHS
The value of ("log" 49 sqrt(7) + "log" ...

The value of `("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5)`, is

A

5

B

2

C

`(5)/(2)`

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\log(49\sqrt{7}) + \log(25\sqrt{5}) - \log(4\sqrt{2})}{\log(17.5)}\), we will follow these steps: ### Step 1: Rewrite the logarithmic arguments We can express \(49\), \(25\), and \(4\) in terms of their bases: - \(49 = 7^2\) - \(25 = 5^2\) - \(4 = 2^2\) Thus, we can rewrite the logs as: \[ \log(49\sqrt{7}) = \log(7^2 \cdot 7^{1/2}) = \log(7^{2 + 1/2}) = \log(7^{5/2}) \] \[ \log(25\sqrt{5}) = \log(5^2 \cdot 5^{1/2}) = \log(5^{2 + 1/2}) = \log(5^{5/2}) \] \[ \log(4\sqrt{2}) = \log(2^2 \cdot 2^{1/2}) = \log(2^{2 + 1/2}) = \log(2^{5/2}) \] ### Step 2: Substitute back into the expression Now, substituting back into the original expression, we have: \[ \frac{\log(7^{5/2}) + \log(5^{5/2}) - \log(2^{5/2})}{\log(17.5)} \] ### Step 3: Use the properties of logarithms Using the property \(\log(a^b) = b \log(a)\), we can simplify: \[ \log(7^{5/2}) = \frac{5}{2} \log(7), \quad \log(5^{5/2}) = \frac{5}{2} \log(5), \quad \log(2^{5/2}) = \frac{5}{2} \log(2) \] Thus, the expression becomes: \[ \frac{\frac{5}{2} \log(7) + \frac{5}{2} \log(5) - \frac{5}{2} \log(2)}{\log(17.5)} \] ### Step 4: Factor out the common term We can factor out \(\frac{5}{2}\) from the numerator: \[ \frac{5}{2} \cdot \frac{\log(7) + \log(5) - \log(2)}{\log(17.5)} \] ### Step 5: Combine the logarithms Using the properties of logarithms, we can combine the logs in the numerator: \[ \log(7) + \log(5) - \log(2) = \log\left(\frac{7 \cdot 5}{2}\right) = \log\left(\frac{35}{2}\right) \] ### Step 6: Substitute back into the expression Now, we substitute this back into the expression: \[ \frac{5}{2} \cdot \frac{\log\left(\frac{35}{2}\right)}{\log(17.5)} \] ### Step 7: Simplify the fraction Since \(\frac{35}{2} = 17.5\), we have: \[ \log\left(\frac{35}{2}\right) = \log(17.5) \] Thus, the expression simplifies to: \[ \frac{5}{2} \cdot \frac{\log(17.5)}{\log(17.5)} = \frac{5}{2} \] ### Final Answer The value of the expression is: \[ \frac{5}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of (log49sqrt 7 + log25sqrt 5 - log4sqrt 2)/log17.5 , is (a)5 (b) 2 (c) 5/2 (d) 3/2

The value of sqrt(4 xx "log"_(0.5)2) , is

The value of "log"_(2)"log"_(2)"log"_(4) 256 + 2 "log"_(sqrt(2))2 , is

The value of 5^(sqrtlog_5 7)-7^sqrt(log_7 5) is

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

The value of "log"_(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))) , is

Find the value of (log)_(2sqrt(3))1728.

Find the value of (log)_(2sqrt(3))1728.

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80).

    Text Solution

    |

  2. The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("...

    Text Solution

    |

  3. The value of 5^(sqrtlog5 7)-7^sqrt(log7 5) is

    Text Solution

    |

  4. The value of 2^("log"(3)7) - 7^("log"(3)2) is

    Text Solution

    |

  5. The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "lo...

    Text Solution

    |

  6. STATEMENT-1 : Number of solution of log |x| = theta^(x) is two and ...

    Text Solution

    |

  7. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  8. If 9a^2 + 4b^2 = 18ab, then log (3a + 2b) =

    Text Solution

    |

  9. The value of "log"(5) (1+ (1)/(5)) + "log"(5) (1+(1)/(6)) + "log"(5...

    Text Solution

    |

  10. If log(x-y)-log5-1/2logx-1/2logy=0 then x/y+y/x is equal to

    Text Solution

    |

  11. If 2^("log"(10) 3sqrt(3)) = 3^(k"log"(10)2), then k =

    Text Solution

    |

  12. If log10 343 = 2.5353 then the least positive integer 'n' such that 7^...

    Text Solution

    |

  13. If "log"(10) 2 = 0.3010, "then log"(5) 64=

    Text Solution

    |

  14. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  15. Find the value of 3^((4)/(log(2)9))+27^((1)/(log(49)9))+81^((1)/(log(4...

    Text Solution

    |

  16. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  17. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  18. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  19. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  20. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |