Home
Class 11
MATHS
The value of 2^("log"(3)7) - 7^("log"(3)...

The value of `2^("log"_(3)7) - 7^("log"_(3)2)` is

A

`"log"2`

B

1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2^{\log_3 7} - 7^{\log_3 2}\), we can use the property of logarithms that states \(a^{\log_b c} = c^{\log_b a}\). ### Step-by-Step Solution: 1. **Identify the expression**: We start with the expression: \[ 2^{\log_3 7} - 7^{\log_3 2} \] 2. **Apply the logarithmic property**: Using the property \(a^{\log_b c} = c^{\log_b a}\), we can rewrite \(2^{\log_3 7}\): \[ 2^{\log_3 7} = 7^{\log_3 2} \] Thus, we can replace \(2^{\log_3 7}\) in our original expression: \[ 2^{\log_3 7} - 7^{\log_3 2} = 7^{\log_3 2} - 7^{\log_3 2} \] 3. **Simplify the expression**: Since both terms are identical, we have: \[ 7^{\log_3 2} - 7^{\log_3 2} = 0 \] 4. **Conclusion**: Therefore, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))

If log_y x +log_x y=7, then the value of (log_y x)^2+(log_x y)^2, is

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.

The value of 5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21)) is.........

The value of 5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21)) is.........

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("...

    Text Solution

    |

  2. The value of 5^(sqrtlog5 7)-7^sqrt(log7 5) is

    Text Solution

    |

  3. The value of 2^("log"(3)7) - 7^("log"(3)2) is

    Text Solution

    |

  4. The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "lo...

    Text Solution

    |

  5. STATEMENT-1 : Number of solution of log |x| = theta^(x) is two and ...

    Text Solution

    |

  6. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  7. If 9a^2 + 4b^2 = 18ab, then log (3a + 2b) =

    Text Solution

    |

  8. The value of "log"(5) (1+ (1)/(5)) + "log"(5) (1+(1)/(6)) + "log"(5...

    Text Solution

    |

  9. If log(x-y)-log5-1/2logx-1/2logy=0 then x/y+y/x is equal to

    Text Solution

    |

  10. If 2^("log"(10) 3sqrt(3)) = 3^(k"log"(10)2), then k =

    Text Solution

    |

  11. If log10 343 = 2.5353 then the least positive integer 'n' such that 7^...

    Text Solution

    |

  12. If "log"(10) 2 = 0.3010, "then log"(5) 64=

    Text Solution

    |

  13. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  14. Find the value of 3^((4)/(log(2)9))+27^((1)/(log(49)9))+81^((1)/(log(4...

    Text Solution

    |

  15. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  16. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  17. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  18. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  19. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |

  20. If a^(x)=b^(y)=c^(z)=d^(w), then log(a)(bcd)=

    Text Solution

    |