Home
Class 11
MATHS
if a^2+4b^2=12ab, then log(a+2b)...

if `a^2+4b^2=12ab,` then `log(a+2b)`

A

`(1)/(2)("log"a + "log"b - "log"2)`

B

`"log"(a)/(2) + "log" (b)/(2) + "log" 2`

C

`(1)/(2)("log"a + "log"b + 4 "log"2)`

D

`(1)/(2)("log"a - "log"b + 4"log" 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 + 4b^2 = 12ab \) and find \( \log(a + 2b) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ a^2 + 4b^2 = 12ab \] ### Step 2: Rearrange the equation We can rearrange this equation to isolate the terms: \[ a^2 - 12ab + 4b^2 = 0 \] ### Step 3: Recognize it as a quadratic equation This is a quadratic equation in terms of \( a \): \[ a^2 - 12ab + 4b^2 = 0 \] ### Step 4: Factor the quadratic We can factor the quadratic equation: \[ (a - 6b)^2 = 0 \] This implies: \[ a - 6b = 0 \quad \Rightarrow \quad a = 6b \] ### Step 5: Substitute \( a \) back into \( a + 2b \) Now we substitute \( a \) back into the expression \( a + 2b \): \[ a + 2b = 6b + 2b = 8b \] ### Step 6: Find \( \log(a + 2b) \) Now we need to find \( \log(a + 2b) \): \[ \log(a + 2b) = \log(8b) \] ### Step 7: Use logarithmic properties Using the properties of logarithms, we can write: \[ \log(8b) = \log(8) + \log(b) \] ### Step 8: Simplify \( \log(8) \) Since \( 8 = 2^3 \), we have: \[ \log(8) = \log(2^3) = 3 \log(2) \] ### Step 9: Final expression Thus, we can express \( \log(a + 2b) \) as: \[ \log(a + 2b) = 3 \log(2) + \log(b) \] ### Conclusion The final result is: \[ \log(a + 2b) = \log(b) + 3 \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 9a^2 + 4b^2 = 18ab, then log (3a + 2b) =

If a^(2) + b^(2) = 23ab , show that : "log" (a+b)/(5) = (1)/(2) (log a + log b) .

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

If log_a(ab)=x then log_b(ab) is equals to

Prove that : (i) (log a)^(2) - (log b)^(2) = log((a)/(b)).log(ab) (ii) If a log b + b log a - 1 = 0, then b^(a).a^(b) = 10

If a+b=7 and ab=12 find the value of a^(2)-ab+b^(2) .

("log"_(2)a)/(3) = ("log"_(2)b)/(4) = ("log"_(2)c)/(5lambda) " and " a^(-3) b^(-4) c = 1 " then " lambda =

If a^(2) + b^(2)= 34 and ab= 12 , find: 7(a-b)^(2) - 2(a +b)^(2)

If a^(2) + b^(2)= 34 and ab= 12 , find: 3(a +b)^(2) + 5(a-b)^(2)

If (a+b)^2/(4ab)=sin^2theta , then

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "lo...

    Text Solution

    |

  2. STATEMENT-1 : Number of solution of log |x| = theta^(x) is two and ...

    Text Solution

    |

  3. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  4. If 9a^2 + 4b^2 = 18ab, then log (3a + 2b) =

    Text Solution

    |

  5. The value of "log"(5) (1+ (1)/(5)) + "log"(5) (1+(1)/(6)) + "log"(5...

    Text Solution

    |

  6. If log(x-y)-log5-1/2logx-1/2logy=0 then x/y+y/x is equal to

    Text Solution

    |

  7. If 2^("log"(10) 3sqrt(3)) = 3^(k"log"(10)2), then k =

    Text Solution

    |

  8. If log10 343 = 2.5353 then the least positive integer 'n' such that 7^...

    Text Solution

    |

  9. If "log"(10) 2 = 0.3010, "then log"(5) 64=

    Text Solution

    |

  10. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  11. Find the value of 3^((4)/(log(2)9))+27^((1)/(log(49)9))+81^((1)/(log(4...

    Text Solution

    |

  12. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  13. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  14. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  15. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  16. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |

  17. If a^(x)=b^(y)=c^(z)=d^(w), then log(a)(bcd)=

    Text Solution

    |

  18. If "log"(5)("log"(5)("log"(2)x)) =0 then the value of x, is

    Text Solution

    |

  19. The number of solutions of the equation "log"(4) (x-1) = "log"(2) (x-3...

    Text Solution

    |

  20. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |