Home
Class 11
MATHS
If 9a^2 + 4b^2 = 18ab, then log (3a + 2b...

If `9a^2 + 4b^2 = 18ab,` then `log (3a + 2b) =`

A

`"log" 5 + "log" 3 + "log" a + "log" 5b`

B

`"log" 5 + "log" 3 + "log" 3a + "log" b`

C

`"log" 5 + "log" a + "log"b `

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(9a^2 + 4b^2 = 18ab\) and find \( \log(3a + 2b) \), we can follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ 9a^2 + 4b^2 = 18ab \] ### Step 2: Rearranging the equation We can rearrange this equation to form a perfect square. Notice that: \[ 9a^2 - 18ab + 4b^2 = 0 \] ### Step 3: Recognize the perfect square The left-hand side can be recognized as a perfect square: \[ (3a - 2b)^2 = 0 \] This implies: \[ 3a - 2b = 0 \quad \Rightarrow \quad 3a = 2b \quad \Rightarrow \quad \frac{a}{b} = \frac{2}{3} \] ### Step 4: Substitute back to find \(3a + 2b\) Now, we can express \(3a + 2b\) in terms of \(b\): \[ 3a + 2b = 3\left(\frac{2}{3}b\right) + 2b = 2b + 2b = 4b \] ### Step 5: Find the logarithm Now, we can find: \[ \log(3a + 2b) = \log(4b) \] ### Step 6: Use logarithmic properties Using the property of logarithms: \[ \log(4b) = \log(4) + \log(b) \] Since \(4 = 2^2\), we can further simplify: \[ \log(4) = 2\log(2) \] Thus: \[ \log(3a + 2b) = 2\log(2) + \log(b) \] ### Final Answer The final expression for \( \log(3a + 2b) \) is: \[ \log(3a + 2b) = 2\log(2) + \log(b) \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

if a^2+4b^2=12ab, then log(a+2b)

if a^2+4b^2=12ab, then log(a+2b)

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

If a^(2) + b^(2) = 23ab , show that : "log" (a+b)/(5) = (1)/(2) (log a + log b) .

If 3a + 4b =9 and ab= 2 find the value of : 27 a^(3) + 64 b ^(3)

If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z , express y in terms of x and z.

Prove that : (i) (log a)^(2) - (log b)^(2) = log((a)/(b)).log(ab) (ii) If a log b + b log a - 1 = 0, then b^(a).a^(b) = 10

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2) = 6ab .

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. STATEMENT-1 : Number of solution of log |x| = theta^(x) is two and ...

    Text Solution

    |

  2. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  3. If 9a^2 + 4b^2 = 18ab, then log (3a + 2b) =

    Text Solution

    |

  4. The value of "log"(5) (1+ (1)/(5)) + "log"(5) (1+(1)/(6)) + "log"(5...

    Text Solution

    |

  5. If log(x-y)-log5-1/2logx-1/2logy=0 then x/y+y/x is equal to

    Text Solution

    |

  6. If 2^("log"(10) 3sqrt(3)) = 3^(k"log"(10)2), then k =

    Text Solution

    |

  7. If log10 343 = 2.5353 then the least positive integer 'n' such that 7^...

    Text Solution

    |

  8. If "log"(10) 2 = 0.3010, "then log"(5) 64=

    Text Solution

    |

  9. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  10. Find the value of 3^((4)/(log(2)9))+27^((1)/(log(49)9))+81^((1)/(log(4...

    Text Solution

    |

  11. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  12. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  13. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  14. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  15. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |

  16. If a^(x)=b^(y)=c^(z)=d^(w), then log(a)(bcd)=

    Text Solution

    |

  17. If "log"(5)("log"(5)("log"(2)x)) =0 then the value of x, is

    Text Solution

    |

  18. The number of solutions of the equation "log"(4) (x-1) = "log"(2) (x-3...

    Text Solution

    |

  19. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |

  20. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |