Home
Class 11
MATHS
The value of "log"(5) (1+ (1)/(5)) + ...

The value of
`"log"_(5) (1+ (1)/(5)) + "log"_(5) (1+(1)/(6)) + "log"_(5)(1+(1)/(7)) + …. + "log"_(5)(1+(1)/(624))` is

A

5

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \text{log}_{5} \left(1 + \frac{1}{5}\right) + \text{log}_{5} \left(1 + \frac{1}{6}\right) + \text{log}_{5} \left(1 + \frac{1}{7}\right) + \ldots + \text{log}_{5} \left(1 + \frac{1}{624}\right) \] we will follow these steps: ### Step 1: Rewrite each logarithmic term We start by rewriting each term in the series. The first term is: \[ \text{log}_{5} \left(1 + \frac{1}{5}\right) = \text{log}_{5} \left(\frac{6}{5}\right) \] The second term is: \[ \text{log}_{5} \left(1 + \frac{1}{6}\right) = \text{log}_{5} \left(\frac{7}{6}\right) \] The third term is: \[ \text{log}_{5} \left(1 + \frac{1}{7}\right) = \text{log}_{5} \left(\frac{8}{7}\right) \] Continuing this way, the last term is: \[ \text{log}_{5} \left(1 + \frac{1}{624}\right) = \text{log}_{5} \left(\frac{625}{624}\right) \] ### Step 2: Combine the logarithmic terms Using the property of logarithms that states \(\text{log}_{a}(x) + \text{log}_{a}(y) = \text{log}_{a}(xy)\), we can combine all the logarithmic terms: \[ \text{log}_{5} \left(\frac{6}{5} \cdot \frac{7}{6} \cdot \frac{8}{7} \cdots \frac{625}{624}\right) \] ### Step 3: Simplify the product Notice that in the product, all intermediate terms will cancel out: \[ \frac{6}{5} \cdot \frac{7}{6} \cdot \frac{8}{7} \cdots \frac{625}{624} = \frac{625}{5} \] ### Step 4: Evaluate the logarithm Now we can rewrite the expression as: \[ \text{log}_{5} \left(\frac{625}{5}\right) = \text{log}_{5} (125) \] Since \(125 = 5^3\), we have: \[ \text{log}_{5} (125) = \text{log}_{5} (5^3) = 3 \] ### Step 5: Final result Thus, the value of the original expression is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125))) , is

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

Solve : log_(5)(x + 1) - 1 = 1 + log_(5)(x - 1) .

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If x = "log"_(2) 3 " and " y = "log"_(1//2) 5 , then

The number of values of x satisfying 1 +"log"_(5) (x^(2) + 1) ge "log"_(5) (x^(2) + 4x +1) , is

"|"log_((1)/(2))10+"|"log_(4)625-"|"log_((1)/(2))5"|||"=

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  2. If 9a^2 + 4b^2 = 18ab, then log (3a + 2b) =

    Text Solution

    |

  3. The value of "log"(5) (1+ (1)/(5)) + "log"(5) (1+(1)/(6)) + "log"(5...

    Text Solution

    |

  4. If log(x-y)-log5-1/2logx-1/2logy=0 then x/y+y/x is equal to

    Text Solution

    |

  5. If 2^("log"(10) 3sqrt(3)) = 3^(k"log"(10)2), then k =

    Text Solution

    |

  6. If log10 343 = 2.5353 then the least positive integer 'n' such that 7^...

    Text Solution

    |

  7. If "log"(10) 2 = 0.3010, "then log"(5) 64=

    Text Solution

    |

  8. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  9. Find the value of 3^((4)/(log(2)9))+27^((1)/(log(49)9))+81^((1)/(log(4...

    Text Solution

    |

  10. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  11. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  12. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  13. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  14. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |

  15. If a^(x)=b^(y)=c^(z)=d^(w), then log(a)(bcd)=

    Text Solution

    |

  16. If "log"(5)("log"(5)("log"(2)x)) =0 then the value of x, is

    Text Solution

    |

  17. The number of solutions of the equation "log"(4) (x-1) = "log"(2) (x-3...

    Text Solution

    |

  18. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |

  19. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |

  20. If "log"(y) x = "log"(z)y = "log"(x)z, then

    Text Solution

    |