Home
Class 11
MATHS
If log(x-y)-log5-1/2logx-1/2logy=0 then ...

If `log(x-y)-log5-1/2logx-1/2logy=0` then `x/y+y/x` is equal to

A

25

B

26

C

27

D

28

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log(x - y) - \log 5 - \frac{1}{2} \log x - \frac{1}{2} \log y = 0 \) and find the value of \( \frac{x}{y} + \frac{y}{x} \), we will follow these steps: ### Step 1: Rewrite the equation using logarithmic properties We start with the original equation: \[ \log(x - y) - \log 5 - \frac{1}{2} \log x - \frac{1}{2} \log y = 0 \] We can use the property of logarithms that states \( \frac{1}{2} \log a = \log a^{1/2} \) to rewrite the equation: \[ \log(x - y) - \log 5 - \log(x^{1/2}) - \log(y^{1/2}) = 0 \] ### Step 2: Combine the logarithmic terms Using the property \( \log a - \log b = \log \frac{a}{b} \), we can combine the logarithmic terms: \[ \log(x - y) - \log(5 \sqrt{xy}) = 0 \] This simplifies to: \[ \log \frac{x - y}{5 \sqrt{xy}} = 0 \] ### Step 3: Exponentiate both sides Exponentiating both sides gives us: \[ \frac{x - y}{5 \sqrt{xy}} = 1 \] This leads to: \[ x - y = 5 \sqrt{xy} \] ### Step 4: Rearrange the equation Rearranging the equation, we have: \[ x - y - 5 \sqrt{xy} = 0 \] ### Step 5: Square both sides To eliminate the square root, we square both sides: \[ (x - y)^2 = (5 \sqrt{xy})^2 \] This simplifies to: \[ x^2 - 2xy + y^2 = 25xy \] ### Step 6: Rearrange to form a quadratic equation Rearranging gives: \[ x^2 - 27xy + y^2 = 0 \] ### Step 7: Use the quadratic formula We can treat this as a quadratic in \( x \): \[ x^2 - 27xy + y^2 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -27y, c = y^2 \): \[ x = \frac{27y \pm \sqrt{(-27y)^2 - 4 \cdot 1 \cdot y^2}}{2 \cdot 1} \] \[ x = \frac{27y \pm \sqrt{729y^2 - 4y^2}}{2} \] \[ x = \frac{27y \pm \sqrt{725y^2}}{2} \] \[ x = \frac{27y \pm 27y\sqrt{\frac{725}{729}}}{2} \] \[ x = \frac{27y(1 \pm \sqrt{\frac{725}{729}})}{2} \] ### Step 8: Find \( \frac{x}{y} + \frac{y}{x} \) Using the identity: \[ \frac{x}{y} + \frac{y}{x} = \frac{x^2 + y^2}{xy} \] From the quadratic equation \( x^2 - 27xy + y^2 = 0 \), we have: \[ x^2 + y^2 = 27xy \] Thus: \[ \frac{x^2 + y^2}{xy} = \frac{27xy}{xy} = 27 \] ### Final Result Therefore, the value of \( \frac{x}{y} + \frac{y}{x} \) is: \[ \boxed{27} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

If 1/2logx+1/2logy+log2=log(x+y) then :

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

If log_2x+log_x2=10/3=log_2y+log_y2 and x!=y ,then x+y=

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If y = 2^(1//"log"_(x)8) , then x equal to

If log(x+y)=2xy, then y'(0) is

x^((log_x)log_a ylog_y z) is equal to

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If 9a^2 + 4b^2 = 18ab, then log (3a + 2b) =

    Text Solution

    |

  2. The value of "log"(5) (1+ (1)/(5)) + "log"(5) (1+(1)/(6)) + "log"(5...

    Text Solution

    |

  3. If log(x-y)-log5-1/2logx-1/2logy=0 then x/y+y/x is equal to

    Text Solution

    |

  4. If 2^("log"(10) 3sqrt(3)) = 3^(k"log"(10)2), then k =

    Text Solution

    |

  5. If log10 343 = 2.5353 then the least positive integer 'n' such that 7^...

    Text Solution

    |

  6. If "log"(10) 2 = 0.3010, "then log"(5) 64=

    Text Solution

    |

  7. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  8. Find the value of 3^((4)/(log(2)9))+27^((1)/(log(49)9))+81^((1)/(log(4...

    Text Solution

    |

  9. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  10. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  11. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  12. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  13. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |

  14. If a^(x)=b^(y)=c^(z)=d^(w), then log(a)(bcd)=

    Text Solution

    |

  15. If "log"(5)("log"(5)("log"(2)x)) =0 then the value of x, is

    Text Solution

    |

  16. The number of solutions of the equation "log"(4) (x-1) = "log"(2) (x-3...

    Text Solution

    |

  17. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |

  18. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |

  19. If "log"(y) x = "log"(z)y = "log"(x)z, then

    Text Solution

    |

  20. If 3^(2x+1)*4^(x-1)=36 then find the value of x

    Text Solution

    |