Home
Class 11
MATHS
If "log"(10) 2 = 0.3010, "then log"(5) 6...

If `"log"_(10) 2 = 0.3010, "then log"_(5) 64=`

A

`(602)/(233)`

B

`(233)/(602)`

C

`(202)/(633)`

D

`(633)/(202)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_5 64 \) given that \( \log_{10} 2 = 0.3010 \). ### Step-by-Step Solution: 1. **Use the Change of Base Formula:** We can express \( \log_5 64 \) using the change of base formula: \[ \log_5 64 = \frac{\log_{10} 64}{\log_{10} 5} \] **Hint:** Remember that the change of base formula allows you to convert logarithms to a different base. 2. **Express 64 in Terms of Powers of 2:** Notice that \( 64 = 2^6 \). Therefore, we can rewrite \( \log_{10} 64 \): \[ \log_{10} 64 = \log_{10} (2^6) = 6 \cdot \log_{10} 2 \] **Hint:** Use the property of logarithms that states \( \log_b (a^n) = n \cdot \log_b a \). 3. **Substitute the Known Value:** Now substitute \( \log_{10} 2 = 0.3010 \) into the equation: \[ \log_{10} 64 = 6 \cdot 0.3010 = 1.806 \] **Hint:** Make sure to multiply correctly to find the value of \( \log_{10} 64 \). 4. **Express \( \log_{10} 5 \):** We can express \( \log_{10} 5 \) using the relationship \( 5 = \frac{10}{2} \): \[ \log_{10} 5 = \log_{10} 10 - \log_{10} 2 = 1 - 0.3010 = 0.6990 \] **Hint:** Use the property \( \log_b (x/y) = \log_b x - \log_b y \) to find \( \log_{10} 5 \). 5. **Substitute Back into the Change of Base Formula:** Now we can substitute \( \log_{10} 64 \) and \( \log_{10} 5 \) back into the formula: \[ \log_5 64 = \frac{1.806}{0.6990} \] **Hint:** Ensure you are dividing the two values accurately. 6. **Calculate the Final Value:** Performing the division: \[ \log_5 64 \approx 2.58 \] **Hint:** Use a calculator for precise division if necessary. ### Final Answer: Thus, \( \log_5 64 \approx 2.58 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If log_(10) 2 = 0.3010 and log_(10) 3 = 0.477 , then find the number of digits in the following numbers: (a) 3^(40)" "(b) 2^(32) xx 5^(25)" (c) 24^(24)

If "log"_(10)5 =x, " then log"_(5) 1250 equals to

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

If (log)_(10)2=0. 30103 ,(log)_(10)3=0. 47712 , then find the number of digits in 3^(12)*2^8

If log_(10) 8 = 0.90 , find the value of : (i) log_(10)4 (ii) log sqrt(32) (iii) log 0.125

Given log_(10)2=0.3010."find"log_(25)200 by using log table

"If" ("log"_(10)a)/(2) = ("log"_(10)b)/(3) = ("log"_(10)c)/(5) , then bc =

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If 2^("log"(10) 3sqrt(3)) = 3^(k"log"(10)2), then k =

    Text Solution

    |

  2. If log10 343 = 2.5353 then the least positive integer 'n' such that 7^...

    Text Solution

    |

  3. If "log"(10) 2 = 0.3010, "then log"(5) 64=

    Text Solution

    |

  4. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  5. Find the value of 3^((4)/(log(2)9))+27^((1)/(log(49)9))+81^((1)/(log(4...

    Text Solution

    |

  6. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  7. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  8. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  9. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  10. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |

  11. If a^(x)=b^(y)=c^(z)=d^(w), then log(a)(bcd)=

    Text Solution

    |

  12. If "log"(5)("log"(5)("log"(2)x)) =0 then the value of x, is

    Text Solution

    |

  13. The number of solutions of the equation "log"(4) (x-1) = "log"(2) (x-3...

    Text Solution

    |

  14. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |

  15. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |

  16. If "log"(y) x = "log"(z)y = "log"(x)z, then

    Text Solution

    |

  17. If 3^(2x+1)*4^(x-1)=36 then find the value of x

    Text Solution

    |

  18. If "log"(x){"log"(4)("log"(x)(5x^(2) +4x^(3)))} =0, then

    Text Solution

    |

  19. If (1)/("log"(x)10) = (2)/("log"(a)10)-2, then x =

    Text Solution

    |

  20. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |