Home
Class 11
MATHS
Find the value of 3^((4)/(log(2)9))+27^(...

Find the value of `3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))`

A

890

B

860

C

857

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 3^{\frac{4}{\log_{2}9}} + 27^{\frac{1}{\log_{49}9}} + 81^{\frac{1}{\log_{4}3}} \), we will use properties of logarithms. Let's break it down step by step. ### Step 1: Simplify \( 3^{\frac{4}{\log_{2}9}} \) Using the property of logarithms that states \( \log_{a}b = \frac{1}{\log_{b}a} \), we can rewrite \( \frac{1}{\log_{2}9} \) as \( \log_{9}2 \). Thus, we have: \[ 3^{\frac{4}{\log_{2}9}} = 3^{4 \cdot \log_{9}2} = 3^{\log_{9}2^4} = 3^{\log_{9}16} \] Using the property \( a^{\log_{b}c} = c^{\log_{b}a} \), we can rewrite this as: \[ 3^{\log_{9}16} = 16^{\log_{9}3} \] ### Step 2: Simplify \( 27^{\frac{1}{\log_{49}9}} \) Similarly, we can rewrite \( \frac{1}{\log_{49}9} \) as \( \log_{9}49 \). Thus, we have: \[ 27^{\frac{1}{\log_{49}9}} = 27^{\log_{9}49} \] Using the property \( a^{\log_{b}c} = c^{\log_{b}a} \), we can rewrite this as: \[ 27^{\log_{9}49} = 49^{\log_{9}27} \] ### Step 3: Simplify \( 81^{\frac{1}{\log_{4}3}} \) Again, we can rewrite \( \frac{1}{\log_{4}3} \) as \( \log_{3}4 \). Thus, we have: \[ 81^{\frac{1}{\log_{4}3}} = 81^{\log_{3}4} \] Using the property \( a^{\log_{b}c} = c^{\log_{b}a} \), we can rewrite this as: \[ 81^{\log_{3}4} = 4^{\log_{3}81} \] ### Step 4: Combine the results Now we can combine all the results: \[ 3^{\frac{4}{\log_{2}9}} + 27^{\frac{1}{\log_{49}9}} + 81^{\frac{1}{\log_{4}3}} = 16^{\log_{9}3} + 49^{\log_{9}27} + 4^{\log_{3}81} \] ### Step 5: Calculate each term 1. **Calculate \( 16^{\log_{9}3} \)**: - \( 16 = 2^4 \), so \( 16^{\log_{9}3} = (2^4)^{\log_{9}3} = 2^{4\log_{9}3} = 2^{\log_{9}3^4} = 2^{\log_{9}81} = 81^{\log_{9}2} \). 2. **Calculate \( 49^{\log_{9}27} \)**: - \( 49 = 7^2 \), so \( 49^{\log_{9}27} = (7^2)^{\log_{9}27} = 7^{2\log_{9}27} = 27^{\log_{9}49} \). 3. **Calculate \( 4^{\log_{3}81} \)**: - \( 4 = 2^2 \), so \( 4^{\log_{3}81} = (2^2)^{\log_{3}81} = 2^{2\log_{3}81} = 81^{\log_{3}4} \). ### Final Calculation Now we can sum the results: \[ 16^{\log_{9}3} + 49^{\log_{9}27} + 4^{\log_{3}81} = 256 + 343 + 81 = 680 \] ### Final Answer Thus, the final value of the expression is: \[ \boxed{680} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Find the value of 3^(2log_(9)3) .

Find the value of 49^((1-log_7(2)))+5^(-log_5(4) is

Find the value of (4/(log_(2)(2sqrt3))+2/(log_(3) (2sqrt3)))^(2) .

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))

Find the value of the following log_(9) 27

Find the value of (1/49)^(1+log_(7)2) + 5^(-log_((1//5))(7) .

Find the value of (1/49)^(1+log_(7)2) + 5^(-log_((1//5))(7) .

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.

Find the value of (log)_2(2 9 3-2)+(log)_2(12 3 3+4+4 9 3)dot

The value of ((1)/(sqrt(27)))^(2-((log_(5)16)/(2log_(5)9))) equal to :

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If "log"(10) 2 = 0.3010, "then log"(5) 64=

    Text Solution

    |

  2. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  3. Find the value of 3^((4)/(log(2)9))+27^((1)/(log(49)9))+81^((1)/(log(4...

    Text Solution

    |

  4. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  5. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  6. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  7. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  8. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |

  9. If a^(x)=b^(y)=c^(z)=d^(w), then log(a)(bcd)=

    Text Solution

    |

  10. If "log"(5)("log"(5)("log"(2)x)) =0 then the value of x, is

    Text Solution

    |

  11. The number of solutions of the equation "log"(4) (x-1) = "log"(2) (x-3...

    Text Solution

    |

  12. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |

  13. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |

  14. If "log"(y) x = "log"(z)y = "log"(x)z, then

    Text Solution

    |

  15. If 3^(2x+1)*4^(x-1)=36 then find the value of x

    Text Solution

    |

  16. If "log"(x){"log"(4)("log"(x)(5x^(2) +4x^(3)))} =0, then

    Text Solution

    |

  17. If (1)/("log"(x)10) = (2)/("log"(a)10)-2, then x =

    Text Solution

    |

  18. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |

  19. If (4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=

    Text Solution

    |

  20. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |