Home
Class 11
MATHS
The value of "log"(sqrt(2)) sqrt(2sqrt(2...

The value of `"log"_(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2))))`, is

A

`(15)/(16)`

B

`(7)/(16)`

C

`(15)/(8)`

D

`(31)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{\sqrt{2}} \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} \), we will follow these steps: ### Step 1: Simplify the expression inside the logarithm We start with the expression inside the logarithm: \[ \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} \] We can denote this entire expression as \( x \): \[ x = \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} \] ### Step 2: Break down the nested square roots We can simplify \( x \) by working from the innermost square root outward. Let's denote: \[ y = \sqrt{2\sqrt{2\sqrt{2}}} \] Then we can express \( x \) as: \[ x = \sqrt{2y} \] ### Step 3: Continue simplifying \( y \) Now we simplify \( y \): \[ y = \sqrt{2\sqrt{2\sqrt{2}}} \] Let \( z = \sqrt{2\sqrt{2}} \): \[ y = \sqrt{2z} \] ### Step 4: Simplify \( z \) Now we simplify \( z \): \[ z = \sqrt{2\sqrt{2}} = \sqrt{2 \cdot 2^{1/2}} = \sqrt{2^{1 + 1/2}} = \sqrt{2^{3/2}} = 2^{3/4} \] Thus, \[ y = \sqrt{2 \cdot 2^{3/4}} = \sqrt{2^{1 + 3/4}} = \sqrt{2^{7/4}} = 2^{7/8} \] ### Step 5: Substitute back to find \( x \) Now substituting \( y \) back into the equation for \( x \): \[ x = \sqrt{2 \cdot 2^{7/8}} = \sqrt{2^{1 + 7/8}} = \sqrt{2^{15/8}} = 2^{15/16} \] ### Step 6: Substitute \( x \) back into the logarithm Now we substitute \( x \) back into the logarithm: \[ \log_{\sqrt{2}}(2^{15/16}) \] ### Step 7: Use logarithm properties Using the property of logarithms \( \log_b(a^c) = c \cdot \log_b(a) \): \[ \log_{\sqrt{2}}(2^{15/16}) = \frac{15}{16} \cdot \log_{\sqrt{2}}(2) \] ### Step 8: Calculate \( \log_{\sqrt{2}}(2) \) Now we calculate \( \log_{\sqrt{2}}(2) \): \[ \log_{\sqrt{2}}(2) = \frac{1}{\frac{1}{2}} = 2 \] ### Step 9: Final calculation Now substituting back: \[ \log_{\sqrt{2}}(2^{15/16}) = \frac{15}{16} \cdot 2 = \frac{15}{8} \] ### Final Answer Thus, the value of \( \log_{\sqrt{2}} \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} \) is: \[ \boxed{\frac{15}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of (log)_(sqrt(4+2sqrt(2))sqrt(4-2sqrt(2)))2^9 is...........

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

The value of 2sqrt(3) + sqrt(3) is

The value of (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9)) is ________.

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

If a =( 4sqrt(6))/(sqrt(2)+sqrt(3)) then the value of (a+2sqrt(2))/(a-2sqrt(2))+(a+2sqrt(3))/(a-2sqrt(3))

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  2. Find the value of 3^((4)/(log(2)9))+27^((1)/(log(49)9))+81^((1)/(log(4...

    Text Solution

    |

  3. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  4. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  5. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  6. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  7. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |

  8. If a^(x)=b^(y)=c^(z)=d^(w), then log(a)(bcd)=

    Text Solution

    |

  9. If "log"(5)("log"(5)("log"(2)x)) =0 then the value of x, is

    Text Solution

    |

  10. The number of solutions of the equation "log"(4) (x-1) = "log"(2) (x-3...

    Text Solution

    |

  11. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |

  12. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |

  13. If "log"(y) x = "log"(z)y = "log"(x)z, then

    Text Solution

    |

  14. If 3^(2x+1)*4^(x-1)=36 then find the value of x

    Text Solution

    |

  15. If "log"(x){"log"(4)("log"(x)(5x^(2) +4x^(3)))} =0, then

    Text Solution

    |

  16. If (1)/("log"(x)10) = (2)/("log"(a)10)-2, then x =

    Text Solution

    |

  17. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |

  18. If (4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=

    Text Solution

    |

  19. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |

  20. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |