Home
Class 11
MATHS
The value of ("log"(a)("log"(b)a))/("log...

The value of `("log"_(a)("log"_(b)a))/("log"_(b)("log"_(a)b))`, is

A

`"log"_(b)a`

B

`"log"_(a) b`

C

`-"log"_(a)b`

D

`-"log"_(b)a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\log_a(\log_b a)}{\log_b(\log_a b)}\), we will use the change of base formula for logarithms, which states that \(\log_a b = \frac{\log b}{\log a}\). ### Step-by-Step Solution: 1. **Rewrite the logarithms using the change of base formula:** \[ \log_a(\log_b a) = \frac{\log(\log_b a)}{\log a} \] \[ \log_b(\log_a b) = \frac{\log(\log_a b)}{\log b} \] 2. **Substituting these into the original expression:** \[ \frac{\log_a(\log_b a)}{\log_b(\log_a b)} = \frac{\frac{\log(\log_b a)}{\log a}}{\frac{\log(\log_a b)}{\log b}} = \frac{\log(\log_b a)}{\log(\log_a b)} \cdot \frac{\log b}{\log a} \] 3. **Now, we need to simplify \(\log(\log_b a)\) and \(\log(\log_a b)\):** - Using the change of base formula again: \[ \log_b a = \frac{\log a}{\log b} \implies \log(\log_b a) = \log\left(\frac{\log a}{\log b}\right) = \log(\log a) - \log(\log b) \] \[ \log_a b = \frac{\log b}{\log a} \implies \log(\log_a b) = \log\left(\frac{\log b}{\log a}\right) = \log(\log b) - \log(\log a) \] 4. **Substituting these back into the expression:** \[ \frac{\log(\log_b a)}{\log(\log_a b)} = \frac{\log(\log a) - \log(\log b)}{\log(\log b) - \log(\log a)} \] 5. **Now, substitute this back into our expression:** \[ \frac{\log(\log a) - \log(\log b)}{\log(\log b) - \log(\log a)} \cdot \frac{\log b}{\log a} \] 6. **Notice that \(\log(\log b) - \log(\log a) = -(\log(\log a) - \log(\log b))\):** \[ = -1 \cdot \frac{\log b}{\log a} = -\frac{\log b}{\log a} \] 7. **Thus, the final value of the expression is:** \[ -\frac{\log b}{\log a} = -\log_a b \] ### Final Answer: The value of \(\frac{\log_a(\log_b a)}{\log_b(\log_a b)}\) is \(-\log_a b\).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of a^(("log"_(b)("log"_(b)x))/("log"_(b) a)) , is

The value of a^((log_b(log_bx))/(log_b a)), is

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

The value of log ab- log|b|=

If (2)/(b)=(1)/(a)+(1)/(c) ,then the value of (log(a+c)+log(a-2b+c))/(log(a-c)) is

If log_(a)b+log_(b)c+log_(c)a vanishes where a, b and c are positive reals different from unity then the value of (log_(a)b)^(3) + (log_(b)c)^(3) + (log_(c)a)^(3) is

If log_(a)b+log_(b)c+log_(c)a vanishes where a, b and c are positive reals different than unity then the value of (log_(a)b)^(3) + (log_(b)c)^(3) + (log_(c)a)^(3) is

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab

The value of (6 a^(log_(e)b)(log_(a^(2))b)(log_(b^(2))a))/(e^(log_(e)a*log_(e)b)) is

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. The value of "log"(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))), is

    Text Solution

    |

  2. The value of a^(("log"(b)("log"(b)x))/("log"(b) a)), is

    Text Solution

    |

  3. The value of ("log"(a)("log"(b)a))/("log"(b)("log"(a)b)), is

    Text Solution

    |

  4. If "log"(2)x + "log"(4)x + "log"(16)x = (21)/(4), then x equals to

    Text Solution

    |

  5. If "log"(10){98 + sqrt(x^(2) -12x + 36)}=2, then x =

    Text Solution

    |

  6. If a^(x)=b^(y)=c^(z)=d^(w), then log(a)(bcd)=

    Text Solution

    |

  7. If "log"(5)("log"(5)("log"(2)x)) =0 then the value of x, is

    Text Solution

    |

  8. The number of solutions of the equation "log"(4) (x-1) = "log"(2) (x-3...

    Text Solution

    |

  9. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |

  10. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |

  11. If "log"(y) x = "log"(z)y = "log"(x)z, then

    Text Solution

    |

  12. If 3^(2x+1)*4^(x-1)=36 then find the value of x

    Text Solution

    |

  13. If "log"(x){"log"(4)("log"(x)(5x^(2) +4x^(3)))} =0, then

    Text Solution

    |

  14. If (1)/("log"(x)10) = (2)/("log"(a)10)-2, then x =

    Text Solution

    |

  15. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |

  16. If (4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=

    Text Solution

    |

  17. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |

  18. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |

  19. If 3 +"log"(5)x = 2"log"(25) y, then x equals to

    Text Solution

    |

  20. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |