Home
Class 11
MATHS
If "log"(2)x + "log"(4)x + "log"(16)x = ...

If `"log"_(2)x + "log"_(4)x + "log"_(16)x = (21)/(4)`, then x equals to

A

8

B

4

C

2

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_2 x + \log_4 x + \log_{16} x = \frac{21}{4} \), we can follow these steps: ### Step 1: Rewrite the logarithms in terms of base 2 We know that: - \( \log_4 x = \log_{2^2} x = \frac{1}{2} \log_2 x \) - \( \log_{16} x = \log_{2^4} x = \frac{1}{4} \log_2 x \) Thus, we can rewrite the equation as: \[ \log_2 x + \frac{1}{2} \log_2 x + \frac{1}{4} \log_2 x = \frac{21}{4} \] ### Step 2: Combine the logarithmic terms Let \( t = \log_2 x \). Then, we can express the equation as: \[ t + \frac{1}{2} t + \frac{1}{4} t = \frac{21}{4} \] ### Step 3: Find a common denominator The common denominator for the left side is 4. Thus, we can rewrite the equation: \[ \frac{4t}{4} + \frac{2t}{4} + \frac{t}{4} = \frac{21}{4} \] This simplifies to: \[ \frac{4t + 2t + t}{4} = \frac{21}{4} \] \[ \frac{7t}{4} = \frac{21}{4} \] ### Step 4: Eliminate the denominator Multiplying both sides by 4 gives: \[ 7t = 21 \] ### Step 5: Solve for \( t \) Dividing both sides by 7 yields: \[ t = 3 \] ### Step 6: Substitute back to find \( x \) Since \( t = \log_2 x \), we have: \[ \log_2 x = 3 \] This implies: \[ x = 2^3 = 8 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If "log"_(3) a xx "log"_(a) x = 4 , then x is equal to

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If "log"_(4) 2 + "log"_(4) 4 + "log"_(4) 16 + "log"_(4) x = 6 , then x =

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

If ("log"_(a)x)/("log"_(ab)x) = 4 + k + "log"_(a)b, "then" k=