Home
Class 11
MATHS
If a^(x)=b^(y)=c^(z)=d^(w), then log(a)...

If `a^(x)=b^(y)=c^(z)=d^(w)`, then `log_(a)(bcd)=`

A

`(1)/(x) ((1)/(y) + (1)/(z) + (1)/(w))`

B

`x((1)/(y) + (1)/(z) + (1)/(w))`

C

`(y + z + w)/(x)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w) .

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

If x^(18)=y^(21)=z^(28) , then 3,3 log_(y)x,3log_(z)y,7log_(x)z are in

If x^(18)=y^(21)=z^(28) , then 3,3 log_(y)x,3log_(z)y,7log_(x)z are in

If x, y, z are in G.P. and a^x=b^y=c^z , then (a) logba=log_ac (b) log_cb =log_ac (c) log_ba=log_cb (d) none of these

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

Statement-1: If a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8) Statement-2: "log"_(b) a = (1)/("log"_(a)b)

If a,b,c,d are in GP and a^x=b^y=c^z=d^u , then x ,y,z,u are in

If x=log_(2a)((bcd)/2), y=log_(3b)((acd)/3), z=log_(4c)((abd)/4) and w=log_(5d)((abc)/5) and 1/(x+1)+1/(y+1)+1/(z+1)+1/(w+1) = log_(abcd)N+1, then value of N/40 is

If a^x=b , b^y=c ,c^z=a and x=(log)_b a^2; y=(log)_c b^3& z=(log)_a c^k , where a,b, c >0 & a , b , c!=1 then k is equal to a. 1/5 b. 1/6 c. (log)_(64)2 d. (log)_(32)2