Home
Class 11
MATHS
If y = 2^(1//"log"(x)8), then x equal to...

If `y = 2^(1//"log"_(x)8)`, then x equal to

A

y

B

`y^(2)`

C

`y^(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y = 2^{\frac{1}{\log_{x} 8}} \), we will follow a series of steps using properties of logarithms. ### Step-by-Step Solution: 1. **Rewrite the logarithm using the change of base formula**: \[ \log_{x} 8 = \frac{1}{\log_{8} x} \] Therefore, we can rewrite \( y \) as: \[ y = 2^{\log_{8} x} \] **Hint**: Remember that the change of base formula allows us to switch the base of a logarithm. 2. **Express 8 as a power of 2**: \[ 8 = 2^3 \] Thus, we can rewrite \( \log_{8} x \) as: \[ \log_{8} x = \log_{2^3} x \] **Hint**: Knowing that \( 8 = 2^3 \) helps in simplifying the logarithm. 3. **Apply the logarithmic property**: Using the property \( \log_{a^b} c = \frac{1}{b} \log_{a} c \), we have: \[ \log_{2^3} x = \frac{1}{3} \log_{2} x \] Therefore, substituting this back into our equation for \( y \): \[ y = 2^{\frac{1}{3} \log_{2} x} \] **Hint**: This property allows us to simplify logarithms with powers. 4. **Simplify using another logarithmic property**: We can use the property \( a^{\log_{b} c} = c^{\log_{b} a} \): \[ y = x^{\frac{1}{3}} \] **Hint**: This property is useful for switching the base and the exponent in logarithmic expressions. 5. **Solve for \( x \)**: To isolate \( x \), we can cube both sides: \[ x = y^3 \] **Hint**: Cubing both sides helps to eliminate the fractional exponent. ### Final Answer: Thus, the value of \( x \) is: \[ x = y^3 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If x - 27 " and " y = "log"_(3) 4, "then" x^(y) equals

If x^((3)/(2)("log"_(2) x-3)) = (1)/(8) , then x equals to

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

Match the column Column I, Column II If x=3,t h e n(log)_4(2(log)_3(1+(log)_2(1+3Log_3x))) is equal to, p. 3 If x=100 , then 3^((log)_3logsqrt(x))-logx+log^2x is equal to, q. 1 If one of the root of the equation 2((log)_xsqrt(5))^2-3(log)_x(a)+1=0 is sqrt(5) , then the other root is, r. 1/2 If (log)_2(4. 3^x-6)-(log)_2(9^x-6)=1, then x is equal to, s. 5

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. The number of solutions of the equation "log"(4) (x-1) = "log"(2) (x-3...

    Text Solution

    |

  2. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |

  3. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |

  4. If "log"(y) x = "log"(z)y = "log"(x)z, then

    Text Solution

    |

  5. If 3^(2x+1)*4^(x-1)=36 then find the value of x

    Text Solution

    |

  6. If "log"(x){"log"(4)("log"(x)(5x^(2) +4x^(3)))} =0, then

    Text Solution

    |

  7. If (1)/("log"(x)10) = (2)/("log"(a)10)-2, then x =

    Text Solution

    |

  8. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |

  9. If (4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=

    Text Solution

    |

  10. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |

  11. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |

  12. If 3 +"log"(5)x = 2"log"(25) y, then x equals to

    Text Solution

    |

  13. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |

  14. 2^(x)xx3^(2x)=100 then x belongs to

    Text Solution

    |

  15. If x^(2"log"(10)x) = 1000x, then x equals to

    Text Solution

    |

  16. If "log"(10)5 =x, " then log"(5) 1250 equals to

    Text Solution

    |

  17. If 5^(3x^(2)"log"(10)2) = 2^((x + (1)/(2))"log"(10) 25), then x equals...

    Text Solution

    |

  18. If "log"(x) (4x^("log"(5)x) + 5) = 2 "log"(5)x, then x equals to

    Text Solution

    |

  19. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  20. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |