Home
Class 11
MATHS
If "log"(y) x = "log"(z)y = "log"(x)z, t...

If `"log"_(y) x = "log"_(z)y = "log"_(x)z`, then

A

`x lt y lt z`

B

`x gt y ge z`

C

`x lt y le z`

D

`x = y =z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we start with the condition: \[ \log_y x = \log_z y = \log_x z \] Let's denote this common value as \( k \). Therefore, we can write: 1. \(\log_y x = k\) 2. \(\log_z y = k\) 3. \(\log_x z = k\) From the properties of logarithms, we can rewrite these equations in exponential form: 1. From \(\log_y x = k\), we have: \[ x = y^k \tag{1} \] 2. From \(\log_z y = k\), we have: \[ y = z^k \tag{2} \] 3. From \(\log_x z = k\), we have: \[ z = x^k \tag{3} \] Now, we can substitute the expressions from equations (1) and (2) into equation (3). Substituting equation (2) into equation (1): \[ x = (z^k)^k = z^{k^2} \tag{4} \] Now substituting equation (4) into equation (3): \[ z = (z^{k^2})^k = z^{k^3} \] For this equation to hold true, we can analyze two cases: 1. If \( z \neq 0 \), we can divide both sides by \( z \) (assuming \( z \neq 1 \)): \[ 1 = z^{k^3 - 1} \] This implies that \( k^3 - 1 = 0 \) or \( z = 1 \). Therefore, \( k^3 = 1 \) leads to \( k = 1 \). 2. If \( k = 1 \), we can substitute back into our earlier equations: - From (1): \( x = y^1 \) implies \( x = y \) - From (2): \( y = z^1 \) implies \( y = z \) - From (3): \( z = x^1 \) implies \( z = x \) Thus, we have: \[ x = y = z \] This means that all three variables are equal. Now, we can check the options provided in the question: 1. \( x < y < z \) 2. \( x > y \geq z \) 3. \( x < y \leq z \) 4. \( x = y = z \) The only option that matches our conclusion is option 4. **Final Answer:** \[ x = y = z \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

The value of x^("log"_(x) a xx "log"_(a)y xx "log"_(y) z) is

If "log"_(8)x = 25 " and log"_(2) y = 50 , then x =

If 1, log_(y)x, log_(z)y,-15 log_(x)z are in A.P. then the correct statement is :

If a = 1 + "log"_(x) yz, b = 1 + "log"_(y) zx, c =1 + "log"_(z) xy, then ab+bc+ca =

If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

Statement-1: If a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8) Statement-2: "log"_(b) a = (1)/("log"_(a)b)

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

For positive numbers x, y and z, the numerical value of the determinant |{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}| is……

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If "log"(2) a + "log"(4) b + "log"(4) c = 2 "log"(9) a + "log"(3) b ...

    Text Solution

    |

  2. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |

  3. If "log"(y) x = "log"(z)y = "log"(x)z, then

    Text Solution

    |

  4. If 3^(2x+1)*4^(x-1)=36 then find the value of x

    Text Solution

    |

  5. If "log"(x){"log"(4)("log"(x)(5x^(2) +4x^(3)))} =0, then

    Text Solution

    |

  6. If (1)/("log"(x)10) = (2)/("log"(a)10)-2, then x =

    Text Solution

    |

  7. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |

  8. If (4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=

    Text Solution

    |

  9. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |

  10. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |

  11. If 3 +"log"(5)x = 2"log"(25) y, then x equals to

    Text Solution

    |

  12. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |

  13. 2^(x)xx3^(2x)=100 then x belongs to

    Text Solution

    |

  14. If x^(2"log"(10)x) = 1000x, then x equals to

    Text Solution

    |

  15. If "log"(10)5 =x, " then log"(5) 1250 equals to

    Text Solution

    |

  16. If 5^(3x^(2)"log"(10)2) = 2^((x + (1)/(2))"log"(10) 25), then x equals...

    Text Solution

    |

  17. If "log"(x) (4x^("log"(5)x) + 5) = 2 "log"(5)x, then x equals to

    Text Solution

    |

  18. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  19. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  20. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |