Home
Class 11
MATHS
If 3^(2x+1)*4^(x-1)=36 then find the val...

If `3^(2x+1)*4^(x-1)=36` then find the value of x

A

`"log"_(36)48`

B

`"log"_(48)36`

C

`"log"_(24)12`

D

`"log"_(12)24`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3^{2x+1} \cdot 4^{x-1} = 36 \), we can follow these steps: ### Step 1: Rewrite the equation We start by rewriting \( 3^{2x+1} \) and \( 4^{x-1} \): \[ 3^{2x+1} = 3^{2x} \cdot 3^1 = 3^{2x} \cdot 3 \] \[ 4^{x-1} = \frac{4^x}{4} = \frac{4^x}{2^2} = \frac{(2^2)^x}{2^2} = \frac{2^{2x}}{4} \] Thus, we can rewrite the original equation as: \[ 3^{2x} \cdot 3 \cdot \frac{2^{2x}}{4} = 36 \] ### Step 2: Simplify the equation Now, we simplify the left-hand side: \[ \frac{3^{2x} \cdot 2^{2x} \cdot 3}{4} = 36 \] Multiply both sides by 4: \[ 3^{2x} \cdot 2^{2x} \cdot 3 = 144 \] ### Step 3: Combine the terms We can combine \( 3^{2x} \cdot 2^{2x} \) as follows: \[ 3^{2x} \cdot 2^{2x} = (3 \cdot 2)^{2x} = 6^{2x} \] Thus, we rewrite the equation: \[ 6^{2x} \cdot 3 = 144 \] ### Step 4: Isolate \( 6^{2x} \) Now, divide both sides by 3: \[ 6^{2x} = \frac{144}{3} = 48 \] ### Step 5: Take logarithm of both sides Taking logarithm on both sides: \[ \log(6^{2x}) = \log(48) \] Using the property of logarithms \( \log(a^b) = b \log(a) \): \[ 2x \log(6) = \log(48) \] ### Step 6: Solve for \( x \) Now, isolate \( x \): \[ x = \frac{\log(48)}{2 \log(6)} \] ### Step 7: Convert to a different logarithmic base Using the change of base formula, we can express this as: \[ x = \frac{1}{2} \cdot \frac{\log(48)}{\log(6)} = \frac{1}{2} \log_6(48) \] ### Final Answer Thus, the value of \( x \) is: \[ x = \frac{1}{2} \log_6(48) \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

If abx^(2)=(a-b)^(2)(x+1) , then find the value of 1+(4)/(x)+(4)/(x^(2)) in terms of a and b.

If |[1, x, x^2], [x, x^2, 1], [x^2, 1, x]|=3, then find the value of |[x^3-1, 0, x-x^4], [0, x-x^4, x^3-1], [x-x^4, x^3-1, 0]|

If x=sqrt(2)-1 then find the value of ((1)/(x)-x)^(3) :-

If f(x) = x^2 - 3x + 4 , then find the values of x satisfying the equation f(x) = f(2x + 1) .

If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If x- (1)/ (x ) = 4 , find the value of : x+ (1)/(x)

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If y = 2^(1//"log"(x)8), then x equal to

    Text Solution

    |

  2. If "log"(y) x = "log"(z)y = "log"(x)z, then

    Text Solution

    |

  3. If 3^(2x+1)*4^(x-1)=36 then find the value of x

    Text Solution

    |

  4. If "log"(x){"log"(4)("log"(x)(5x^(2) +4x^(3)))} =0, then

    Text Solution

    |

  5. If (1)/("log"(x)10) = (2)/("log"(a)10)-2, then x =

    Text Solution

    |

  6. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |

  7. If (4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=

    Text Solution

    |

  8. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |

  9. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |

  10. If 3 +"log"(5)x = 2"log"(25) y, then x equals to

    Text Solution

    |

  11. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |

  12. 2^(x)xx3^(2x)=100 then x belongs to

    Text Solution

    |

  13. If x^(2"log"(10)x) = 1000x, then x equals to

    Text Solution

    |

  14. If "log"(10)5 =x, " then log"(5) 1250 equals to

    Text Solution

    |

  15. If 5^(3x^(2)"log"(10)2) = 2^((x + (1)/(2))"log"(10) 25), then x equals...

    Text Solution

    |

  16. If "log"(x) (4x^("log"(5)x) + 5) = 2 "log"(5)x, then x equals to

    Text Solution

    |

  17. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  18. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  19. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  20. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |