Home
Class 11
MATHS
If (1)/("log"(x)10) = (2)/("log"(a)10)-2...

If `(1)/("log"_(x)10) = (2)/("log"_(a)10)-2`, then x =

A

`(a)/(2)`

B

`(a)/(100)`

C

`(a^(2))/(10)`

D

`(a^(2))/(100)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1}{\log_{x}10} = \frac{2}{\log_{a}10} - 2 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \frac{1}{\log_{x}10} = \frac{2}{\log_{a}10} - 2 \] ### Step 2: Simplify the right-hand side To simplify the right-hand side, we can express \( 2 \) in terms of logarithms: \[ 2 = \frac{2 \log_{a}10}{\log_{a}10} \] Thus, we rewrite the equation as: \[ \frac{1}{\log_{x}10} = \frac{2 - 2 \log_{a}10}{\log_{a}10} \] This simplifies to: \[ \frac{1}{\log_{x}10} = \frac{2 - 2 \log_{a}10}{\log_{a}10} \] ### Step 3: Combine the fractions on the right-hand side Now we can combine the fractions on the right: \[ \frac{1}{\log_{x}10} = \frac{2 - 2 \log_{a}10}{\log_{a}10} = \frac{2(1 - \log_{a}10)}{\log_{a}10} \] ### Step 4: Cross-multiply Cross-multiplying gives us: \[ \log_{a}10 = 2(1 - \log_{a}10) \log_{x}10 \] ### Step 5: Distribute and rearrange Distributing on the right-hand side: \[ \log_{a}10 = 2 \log_{x}10 - 2 \log_{x}10 \log_{a}10 \] Rearranging the equation: \[ \log_{a}10 + 2 \log_{x}10 \log_{a}10 = 2 \log_{x}10 \] ### Step 6: Factor out common terms Factoring out \( \log_{a}10 \): \[ \log_{a}10 (1 + 2 \log_{x}10) = 2 \log_{x}10 \] ### Step 7: Isolate \( \log_{x}10 \) Now we can isolate \( \log_{x}10 \): \[ \log_{x}10 = \frac{\log_{a}10}{2 \log_{a}10 - 1} \] ### Step 8: Convert back to exponential form Using the property of logarithms, we can express \( x \) in terms of \( a \): \[ x = 10^{\frac{\log_{a}10}{2 \log_{a}10 - 1}} \] ### Step 9: Simplify the expression Using the change of base formula, we can express this as: \[ x = \frac{a^2}{100} \] ### Final Answer Thus, the value of \( x \) is: \[ x = \frac{a^2}{100} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

If (log)_(10)[1/(2^x+x-1)]=x[(log)_(10)5-1] , then x= 4 (b) 3 (c) 2 (d) 1

If (log)_(10)[1/(2^x+x-1)]=x[(log)_(10)5-1] , then x= 4 (b) 3 (c) 2 (d) 1

If "log"_(10) sin x+"log"_(10)cos x=-1 and "log"_(10)(sin x+cosx)=(("log"_(10)n)n-1)/(2) then the value of n is ____________

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

((log)_(10)(x-3))/((log)_(10)(x^2-21))=1/2 then find x.

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10 then what is ((dy)/(dx))_(x=10) equal to?

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If 3^(2x+1)*4^(x-1)=36 then find the value of x

    Text Solution

    |

  2. If "log"(x){"log"(4)("log"(x)(5x^(2) +4x^(3)))} =0, then

    Text Solution

    |

  3. If (1)/("log"(x)10) = (2)/("log"(a)10)-2, then x =

    Text Solution

    |

  4. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |

  5. If (4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=

    Text Solution

    |

  6. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |

  7. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |

  8. If 3 +"log"(5)x = 2"log"(25) y, then x equals to

    Text Solution

    |

  9. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |

  10. 2^(x)xx3^(2x)=100 then x belongs to

    Text Solution

    |

  11. If x^(2"log"(10)x) = 1000x, then x equals to

    Text Solution

    |

  12. If "log"(10)5 =x, " then log"(5) 1250 equals to

    Text Solution

    |

  13. If 5^(3x^(2)"log"(10)2) = 2^((x + (1)/(2))"log"(10) 25), then x equals...

    Text Solution

    |

  14. If "log"(x) (4x^("log"(5)x) + 5) = 2 "log"(5)x, then x equals to

    Text Solution

    |

  15. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  16. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  17. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  18. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |

  19. loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

    Text Solution

    |

  20. If "log"(2) 7 = x, then x is:

    Text Solution

    |