Home
Class 11
MATHS
If (4.2)^(x) = (0.42)^(y) = 100, " then ...

If `(4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=`

A

1

B

2

C

`(1)/(2)`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (4.2)^x = (0.42)^y = 100 \) and find \( \frac{1}{x} - \frac{1}{y} \), we can follow these steps: ### Step 1: Set up the equations From the given equation, we can write: 1. \( (4.2)^x = 100 \) 2. \( (0.42)^y = 100 \) ### Step 2: Take logarithms Taking logarithm (base 10) on both sides of the first equation: \[ \log(4.2^x) = \log(100) \] Using the property of logarithms, we can rewrite this as: \[ x \cdot \log(4.2) = \log(100) \] Since \( \log(100) = 2 \) (because \( 100 = 10^2 \)), we have: \[ x \cdot \log(4.2) = 2 \] Thus, we can express \( x \) as: \[ x = \frac{2}{\log(4.2)} \] ### Step 3: Repeat for the second equation Now, taking logarithm (base 10) on both sides of the second equation: \[ \log(0.42^y) = \log(100) \] This can be rewritten as: \[ y \cdot \log(0.42) = \log(100) \] Again, since \( \log(100) = 2 \), we have: \[ y \cdot \log(0.42) = 2 \] Thus, we can express \( y \) as: \[ y = \frac{2}{\log(0.42)} \] ### Step 4: Find \( \frac{1}{x} - \frac{1}{y} \) Now, we need to find \( \frac{1}{x} - \frac{1}{y} \): \[ \frac{1}{x} = \frac{\log(4.2)}{2} \] \[ \frac{1}{y} = \frac{\log(0.42)}{2} \] Thus, \[ \frac{1}{x} - \frac{1}{y} = \frac{\log(4.2)}{2} - \frac{\log(0.42)}{2} \] This can be simplified as: \[ \frac{1}{x} - \frac{1}{y} = \frac{1}{2} \left( \log(4.2) - \log(0.42) \right) \] ### Step 5: Use the property of logarithms Using the property of logarithms that states \( \log(a) - \log(b) = \log\left(\frac{a}{b}\right) \), we have: \[ \log(4.2) - \log(0.42) = \log\left(\frac{4.2}{0.42}\right) \] Calculating \( \frac{4.2}{0.42} \): \[ \frac{4.2}{0.42} = 10 \] Thus, \[ \log(4.2) - \log(0.42) = \log(10) = 1 \] ### Step 6: Final calculation Substituting back, we find: \[ \frac{1}{x} - \frac{1}{y} = \frac{1}{2} \cdot 1 = \frac{1}{2} \] ### Conclusion The final answer is: \[ \frac{1}{x} - \frac{1}{y} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 3^(4x)=(81)^(-1) and 10^(1/y)=0. 0001 , find the value of 2^(-x+4y)

Find y(x) , if it satisfies the following differential equation (dy)/(dx)=(x-y)^2 , and given that y(1)=1 (A) -ln|(1-x+y)/(1+x-y)|=2(x-1) (B) ln|(2-y)/(2-x)=x+y-1 (C) ln|(1-x+y)/(1+x-y)|=2(x-1) (D) 1/2ln|(1-x+y)/(1+x-y)|+ln|x|=0

If x lt 0 , lt 0 , x + y +(x)/4=(1)/(2) and (x+y)((x)/y)=-(1)/(2) then :

The equation of the incircle of the triangle formed by the coordinate axes and the line 4x + 3y - 6 = 0 is (A) x^(2) + y^(2) - 6x - 6y - 9 = 0 (B) 4 (x^(2) + y^(2) - x - y) + 1 = 0 (C) 4 (x^(2) + y^(2) + x + y) + 1 = 0 (D) 4 (x^(2) + y^(2) - x - y ) - 1 = 0

If x^3-2x^2y^2+5x+y-5=0 and y(1)=1 , then (a) y^(prime)(1)=4/3 (b) y'(1)=-4/3 (c) y''(1)=-8(22)/(27) (d) y^(prime)(1)=2/3

Find the direct common tangents of the circles x^(2) + y^(2) +22x -4y -100 =0 and x^(2) + y^(2) -22x + 4y +100 =0

If the hyperbola xy=c^(2) intersects the circle x^(2)+y^(2)=a^(2)" is four points "P(x_(1),y_(1)), Q(x_(2),y_(2)), R(x_(3),y_(3)) and S(x_(4),y_(4)) then show that (i) x_(1)+x_(2)+x_(3)+x_(4)=0 (ii) y_(1)+y_(2)+y_(3)+y_(4)=0 (iii) x_(1)x_(2)x_(3)x_(4)=c^(4) (iv) y_(1)y_(2)y_(3)y_(4)=c^(4)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then prove that (1-x^2)y_2-xy_(1)-4=0.

If (x_(1),y_(1)) and (x_(2),y_(2)) are the ends of a focal chord of the parabola y^(2) = 4ax then show that x_(1)x_(2)=a^(2),y_(1)y_(2)= -4a^(2)

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If (1)/("log"(x)10) = (2)/("log"(a)10)-2, then x =

    Text Solution

    |

  2. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |

  3. If (4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=

    Text Solution

    |

  4. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |

  5. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |

  6. If 3 +"log"(5)x = 2"log"(25) y, then x equals to

    Text Solution

    |

  7. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |

  8. 2^(x)xx3^(2x)=100 then x belongs to

    Text Solution

    |

  9. If x^(2"log"(10)x) = 1000x, then x equals to

    Text Solution

    |

  10. If "log"(10)5 =x, " then log"(5) 1250 equals to

    Text Solution

    |

  11. If 5^(3x^(2)"log"(10)2) = 2^((x + (1)/(2))"log"(10) 25), then x equals...

    Text Solution

    |

  12. If "log"(x) (4x^("log"(5)x) + 5) = 2 "log"(5)x, then x equals to

    Text Solution

    |

  13. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  14. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  15. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  16. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |

  17. loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

    Text Solution

    |

  18. If "log"(2) 7 = x, then x is:

    Text Solution

    |

  19. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  20. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |