Home
Class 11
MATHS
If "log"(8)x = 25 " and log"(2) y = 50, ...

If `"log"_(8)x = 25 " and log"_(2) y = 50`, then x =

A

`y^(3//2)`

B

2y

C

y

D

`(y)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Rewrite the logarithmic equation We start with the equation given in the problem: \[ \log_{8} x = 25 \] This can be rewritten in exponential form: \[ x = 8^{25} \] ### Step 2: Express 8 in terms of base 2 Next, we express 8 as a power of 2: \[ 8 = 2^3 \] Substituting this into our equation for \(x\): \[ x = (2^3)^{25} \] ### Step 3: Simplify the exponent Using the power of a power property \((a^m)^n = a^{m \cdot n}\), we simplify: \[ x = 2^{3 \cdot 25} = 2^{75} \] ### Step 4: Use the second logarithmic equation Now, we look at the second equation given in the problem: \[ \log_{2} y = 50 \] This can also be rewritten in exponential form: \[ y = 2^{50} \] ### Step 5: Relate \(x\) to \(y\) We have \(x = 2^{75}\) and \(y = 2^{50}\). To express \(x\) in terms of \(y\), we can write: \[ x = 2^{75} = 2^{50 \cdot \frac{75}{50}} = (2^{50})^{\frac{75}{50}} = y^{\frac{75}{50}} \] Simplifying \(\frac{75}{50}\): \[ \frac{75}{50} = \frac{3}{2} \] Thus, we have: \[ x = y^{\frac{3}{2}} \] ### Final Answer So, the value of \(x\) in terms of \(y\) is: \[ \boxed{y^{\frac{3}{2}}} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If x = "log"_(2) 3 " and " y = "log"_(1//2) 5 , then

If 2"log"_(8) a =x, "log"_(2) 2a = y " and " y-x =4, then x =

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

If x = "log"_(0.1) 0.001, y = "log"_(9) 81 , then sqrt(x - 2sqrt(y)) is equal to

If log xy^(3) = m and log x ^(3) y ^(2) = p, " find " log (x^(2) -: y) in terms of m and p.

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If log(12) 27 = a," then find "log(6) 16 in terms of a.

    Text Solution

    |

  2. If (4.2)^(x) = (0.42)^(y) = 100, " then "(1)/(x) -(1)/(y)=

    Text Solution

    |

  3. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |

  4. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |

  5. If 3 +"log"(5)x = 2"log"(25) y, then x equals to

    Text Solution

    |

  6. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |

  7. 2^(x)xx3^(2x)=100 then x belongs to

    Text Solution

    |

  8. If x^(2"log"(10)x) = 1000x, then x equals to

    Text Solution

    |

  9. If "log"(10)5 =x, " then log"(5) 1250 equals to

    Text Solution

    |

  10. If 5^(3x^(2)"log"(10)2) = 2^((x + (1)/(2))"log"(10) 25), then x equals...

    Text Solution

    |

  11. If "log"(x) (4x^("log"(5)x) + 5) = 2 "log"(5)x, then x equals to

    Text Solution

    |

  12. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  13. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  14. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  15. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |

  16. loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

    Text Solution

    |

  17. If "log"(2) 7 = x, then x is:

    Text Solution

    |

  18. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  19. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  20. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |