Home
Class 11
MATHS
If 3 +"log"(5)x = 2"log"(25) y, then x ...

If ` 3 +"log"_(5)x = 2"log"_(25) y`, then x equals to

A

`(y)/(125)`

B

`(y)/(25)`

C

`(y^(2))/(25)`

D

`3-(y^(2))/(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3 + \log_{5} x = 2 \log_{25} y \), we will follow these steps: ### Step 1: Rewrite the Right-Hand Side We start with the right-hand side, \( 2 \log_{25} y \). We can express \( \log_{25} y \) in terms of base 5: \[ \log_{25} y = \log_{5} y / \log_{5} 25 \] Since \( 25 = 5^2 \), we have \( \log_{5} 25 = 2 \). Therefore: \[ \log_{25} y = \frac{\log_{5} y}{2} \] Thus, \[ 2 \log_{25} y = 2 \cdot \frac{\log_{5} y}{2} = \log_{5} y \] ### Step 2: Substitute Back into the Equation Now we can substitute this back into the original equation: \[ 3 + \log_{5} x = \log_{5} y \] ### Step 3: Isolate \( \log_{5} x \) Next, we isolate \( \log_{5} x \) by moving 3 to the right-hand side: \[ \log_{5} x = \log_{5} y - 3 \] ### Step 4: Rewrite 3 in Logarithmic Form We can express 3 in terms of logarithms: \[ 3 = \log_{5} (5^3) = \log_{5} 125 \] So we can rewrite the equation as: \[ \log_{5} x = \log_{5} y - \log_{5} 125 \] ### Step 5: Use Logarithmic Properties Using the property of logarithms that states \( \log_{a} b - \log_{a} c = \log_{a} \left( \frac{b}{c} \right) \), we have: \[ \log_{5} x = \log_{5} \left( \frac{y}{125} \right) \] ### Step 6: Equate Arguments of Logarithms Since the logarithms are equal, we can equate their arguments: \[ x = \frac{y}{125} \] ### Final Result Thus, the value of \( x \) is: \[ x = \frac{y}{125} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If "log"_(3) a xx "log"_(a) x = 4 , then x is equal to

If "log"_(2)x + "log"_(4)x + "log"_(16)x = (21)/(4) , then x equals to

If "log"_(8)x = 25 " and log"_(2) y = 50 , then x =

If y = 2^(1//"log"_(x)8) , then x equal to

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

If "log"_(4) 5 = x " and log"_(5) 6 = y, " then log"_(2) 3 is equal to

If x - 27 " and " y = "log"_(3) 4, "then" x^(y) equals

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If "log"(8)x = 25 " and log"(2) y = 50, then x =

    Text Solution

    |

  2. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |

  3. If 3 +"log"(5)x = 2"log"(25) y, then x equals to

    Text Solution

    |

  4. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |

  5. 2^(x)xx3^(2x)=100 then x belongs to

    Text Solution

    |

  6. If x^(2"log"(10)x) = 1000x, then x equals to

    Text Solution

    |

  7. If "log"(10)5 =x, " then log"(5) 1250 equals to

    Text Solution

    |

  8. If 5^(3x^(2)"log"(10)2) = 2^((x + (1)/(2))"log"(10) 25), then x equals...

    Text Solution

    |

  9. If "log"(x) (4x^("log"(5)x) + 5) = 2 "log"(5)x, then x equals to

    Text Solution

    |

  10. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  11. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  12. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  13. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |

  14. loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

    Text Solution

    |

  15. If "log"(2) 7 = x, then x is:

    Text Solution

    |

  16. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  17. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  18. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |

  19. If log(2a-3b)=loga-logb, then a=

    Text Solution

    |

  20. If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y)...

    Text Solution

    |