Home
Class 11
MATHS
If ("log"a)/(3) = ("log"b)/(4) = ("log"c...

If `("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5)`, then ca equals

A

2b

B

`b^(2)`

C

8b

D

4b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{\log a}{3} = \frac{\log b}{4} = \frac{\log c}{5} = k \] ### Step 1: Express logarithms in terms of \( k \) From the equation, we can express the logarithms of \( a \), \( b \), and \( c \) in terms of \( k \): \[ \log a = 3k \] \[ \log b = 4k \] \[ \log c = 5k \] ### Step 2: Convert logarithmic expressions to exponential form Now, we can convert these logarithmic expressions into exponential form: \[ a = 10^{3k} \] \[ b = 10^{4k} \] \[ c = 10^{5k} \] ### Step 3: Calculate \( c \times a \) Next, we need to find \( c \times a \): \[ c \times a = (10^{5k}) \times (10^{3k}) \] Using the property of exponents that states \( x^m \times x^n = x^{m+n} \): \[ c \times a = 10^{5k + 3k} = 10^{8k} \] ### Step 4: Express \( c \times a \) in terms of \( b \) We know from our earlier expression that: \[ b = 10^{4k} \] To express \( c \times a \) in terms of \( b \): \[ b^2 = (10^{4k})^2 = 10^{8k} \] Thus, we have: \[ c \times a = b^2 \] ### Conclusion Therefore, the final result is: \[ c \times a = b^2 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

"If" ("log"_(10)a)/(2) = ("log"_(10)b)/(3) = ("log"_(10)c)/(5) , then bc =

("log"_(2)a)/(3) = ("log"_(2)b)/(4) = ("log"_(2)c)/(5lambda) " and " a^(-3) b^(-4) c = 1 " then " lambda =

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If "log"_(3) a xx "log"_(a) x = 4 , then x is equal to

If "log"_(10)5 =x, " then log"_(5) 1250 equals to

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

If "log"_(2) a + "log"_(4) b + "log"_(4) c = 2 "log"_(9) a + "log"_(3) b + "log"_(9) c = 2 "log"_(16) a + "log"_(16) b + "log"_(4) c =2 , then

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If "log"(e) 2."log"(x) 27 = "log"(10) 8."log"(e) 10, then x =

    Text Solution

    |

  2. If 3 +"log"(5)x = 2"log"(25) y, then x equals to

    Text Solution

    |

  3. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |

  4. 2^(x)xx3^(2x)=100 then x belongs to

    Text Solution

    |

  5. If x^(2"log"(10)x) = 1000x, then x equals to

    Text Solution

    |

  6. If "log"(10)5 =x, " then log"(5) 1250 equals to

    Text Solution

    |

  7. If 5^(3x^(2)"log"(10)2) = 2^((x + (1)/(2))"log"(10) 25), then x equals...

    Text Solution

    |

  8. If "log"(x) (4x^("log"(5)x) + 5) = 2 "log"(5)x, then x equals to

    Text Solution

    |

  9. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  10. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  11. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  12. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |

  13. loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

    Text Solution

    |

  14. If "log"(2) 7 = x, then x is:

    Text Solution

    |

  15. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  16. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  17. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |

  18. If log(2a-3b)=loga-logb, then a=

    Text Solution

    |

  19. If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y)...

    Text Solution

    |

  20. ("log"(2)a)/(3) = ("log"(2)b)/(4) = ("log"(2)c)/(5lambda) " and " a^(-...

    Text Solution

    |