Home
Class 11
MATHS
If x^(2"log"(10)x) = 1000x, then x equal...

If `x^(2"log"_(10)x) = 1000x`, then x equals to

A

`10, sqrt(10)`

B

`10^(-1), 10sqrt(10)`

C

`10sqrt(10)`

D

`sqrt(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{2 \log_{10} x} = 1000x \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the logarithm (base 10) of both sides of the equation: \[ \log_{10}(x^{2 \log_{10} x}) = \log_{10}(1000x) \] ### Step 2: Apply the logarithmic properties Using the property of logarithms that states \( \log(a^b) = b \log(a) \), we can simplify the left-hand side: \[ 2 \log_{10} x \cdot \log_{10} x = \log_{10}(1000) + \log_{10}(x) \] This simplifies to: \[ 2 (\log_{10} x)^2 = \log_{10}(1000) + \log_{10}(x) \] ### Step 3: Simplify the right-hand side We know that \( 1000 = 10^3 \), so: \[ \log_{10}(1000) = 3 \] Thus, the equation becomes: \[ 2 (\log_{10} x)^2 = 3 + \log_{10} x \] ### Step 4: Rearrange the equation Rearranging the equation gives us: \[ 2 (\log_{10} x)^2 - \log_{10} x - 3 = 0 \] ### Step 5: Let \( y = \log_{10} x \) Let \( y = \log_{10} x \). The equation now reads: \[ 2y^2 - y - 3 = 0 \] ### Step 6: Factor the quadratic equation We can factor the quadratic: \[ (2y + 3)(y - 2) = 0 \] Setting each factor to zero gives: 1. \( 2y + 3 = 0 \) → \( y = -\frac{3}{2} \) 2. \( y - 2 = 0 \) → \( y = 2 \) ### Step 7: Solve for \( x \) Now we convert back to \( x \): 1. For \( y = -\frac{3}{2} \): \[ \log_{10} x = -\frac{3}{2} \implies x = 10^{-\frac{3}{2}} = \frac{1}{10^{3/2}} = \frac{1}{\sqrt{1000}} = \frac{1}{31.6228} \approx 0.0316 \] 2. For \( y = 2 \): \[ \log_{10} x = 2 \implies x = 10^2 = 100 \] ### Final Solutions Thus, the solutions for \( x \) are: \[ x = 10^{-\frac{3}{2}} \quad \text{and} \quad x = 100 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If the 6th term in the expansion of (1/(x^(8/3))+x^2(log)_(10)x)^8 is 5600, then x equals 1 b. (log)_e 10 c. 10 d. x does not exist

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

If "log"_(2)x + "log"_(4)x + "log"_(16)x = (21)/(4) , then x equals to

If y = 2^(1//"log"_(x)8) , then x equal to

If "log"_(10)5 =x, " then log"_(5) 1250 equals to

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If a gt 1, x gt 0 and 2^(log_(a)(2x))=5^(log_(a)(5x)) , then x is equal to

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5), then ca equals

    Text Solution

    |

  2. 2^(x)xx3^(2x)=100 then x belongs to

    Text Solution

    |

  3. If x^(2"log"(10)x) = 1000x, then x equals to

    Text Solution

    |

  4. If "log"(10)5 =x, " then log"(5) 1250 equals to

    Text Solution

    |

  5. If 5^(3x^(2)"log"(10)2) = 2^((x + (1)/(2))"log"(10) 25), then x equals...

    Text Solution

    |

  6. If "log"(x) (4x^("log"(5)x) + 5) = 2 "log"(5)x, then x equals to

    Text Solution

    |

  7. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  8. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  9. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  10. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |

  11. loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

    Text Solution

    |

  12. If "log"(2) 7 = x, then x is:

    Text Solution

    |

  13. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  14. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  15. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |

  16. If log(2a-3b)=loga-logb, then a=

    Text Solution

    |

  17. If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y)...

    Text Solution

    |

  18. ("log"(2)a)/(3) = ("log"(2)b)/(4) = ("log"(2)c)/(5lambda) " and " a^(-...

    Text Solution

    |

  19. if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

    Text Solution

    |

  20. The value of (0.16)^log2.5{1/3+1/3^2+...} is

    Text Solution

    |