Home
Class 11
MATHS
If x ="log"(a)(bc), y ="log"(b)(ca) " an...

If `x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), ` then which of the following is correct?

A

`x + y +z =1`

B

`(1)/(1+x) + (1)/(1+y) + (1)/(1+z) =1`

C

xyz =1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expressions given for \( x \), \( y \), and \( z \) and determine which of the provided options is correct. Given: - \( x = \log_a(bc) \) - \( y = \log_b(ca) \) - \( z = \log_c(ab) \) ### Step 1: Evaluate \( x + y + z \) We start with the first option, which states that \( x + y + z = 1 \). \[ x + y + z = \log_a(bc) + \log_b(ca) + \log_c(ab) \] Using the change of base formula, we can express each logarithm in terms of natural logarithms (or any common base): \[ x = \frac{\log(bc)}{\log(a)}, \quad y = \frac{\log(ca)}{\log(b)}, \quad z = \frac{\log(ab)}{\log(c)} \] Thus, \[ x + y + z = \frac{\log(bc)}{\log(a)} + \frac{\log(ca)}{\log(b)} + \frac{\log(ab)}{\log(c)} \] This expression cannot be simplified to show that it equals 1. Therefore, we conclude that the first option is **not correct**. ### Step 2: Evaluate \( \frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z} \) Next, we check the second option: \[ \frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z} \] Calculating \( \frac{1}{1+x} \): \[ \frac{1}{1+x} = \frac{1}{1+\log_a(bc)} = \frac{1}{\frac{\log(a)}{\log(a)} + \frac{\log(bc)}{\log(a)}} = \frac{\log(a)}{\log(a) + \log(bc)} = \frac{\log(a)}{\log(a) + \log(b) + \log(c)} \] Similarly, we can find: \[ \frac{1}{1+y} = \frac{\log(b)}{\log(b) + \log(c) + \log(a)} \] \[ \frac{1}{1+z} = \frac{\log(c)}{\log(c) + \log(a) + \log(b)} \] Adding these together: \[ \frac{\log(a)}{\log(a) + \log(b) + \log(c)} + \frac{\log(b)}{\log(a) + \log(b) + \log(c)} + \frac{\log(c)}{\log(a) + \log(b) + \log(c)} = \frac{\log(a) + \log(b) + \log(c)}{\log(a) + \log(b) + \log(c)} = 1 \] Thus, the second option is **correct**. ### Step 3: Evaluate \( xyz \) Now, we check the third option which states \( xyz = 1 \): \[ xyz = \log_a(bc) \cdot \log_b(ca) \cdot \log_c(ab) \] Using the change of base formula again, we can express this as: \[ xyz = \left(\frac{\log(bc)}{\log(a)}\right) \cdot \left(\frac{\log(ca)}{\log(b)}\right) \cdot \left(\frac{\log(ab)}{\log(c)}\right) \] This expression does not simplify to 1. Therefore, the third option is **not correct**. ### Conclusion After evaluating all options, we find that the only correct option is: **Option 2: \( \frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z} = 1 \)**
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If x=log_(a)bc, y=log_(b)ac and z=log_(c)ab then which of the following is equal to unity ?

"If" ("log"_(10)a)/(2) = ("log"_(10)b)/(3) = ("log"_(10)c)/(5) , then bc =

if x =log_a (bc), y= log_b (ca) and z=log_c(ab) then 1/(x+1)+1/(y+1)+1/(z+1)

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

For the system of equation "log"_(10) (x^(3)-x^(2)) = "log"_(5)y^(2) "log"_(10)(y^(3)-y^(2)) = "log"_(5) z^(2) "log"_(10)(z^(3)-z^(2)) = "log"_(5)x^(2) Which of the following is/are true?

If ("log"_(a)x)/("log"_(ab)x) = 4 + k + "log"_(a)b, "then" k=

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5) , then ca equals

1/log_(ab)(abc)+1/log_(bc)(abc)+1/log_(ca)(abc) is equal to:

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. The equation "log"(e)x + "log"(e)(1+x) =0 can be written as

    Text Solution

    |

  2. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  3. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  4. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |

  5. loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

    Text Solution

    |

  6. If "log"(2) 7 = x, then x is:

    Text Solution

    |

  7. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  8. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  9. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |

  10. If log(2a-3b)=loga-logb, then a=

    Text Solution

    |

  11. If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y)...

    Text Solution

    |

  12. ("log"(2)a)/(3) = ("log"(2)b)/(4) = ("log"(2)c)/(5lambda) " and " a^(-...

    Text Solution

    |

  13. if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

    Text Solution

    |

  14. The value of (0.16)^log2.5{1/3+1/3^2+...} is

    Text Solution

    |

  15. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  16. Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80).

    Text Solution

    |

  17. If 1/2logx+1/2logy+log2=log(x+y) then :

    Text Solution

    |

  18. The number of real solutions of the equation "log" (-x) = 2"log" (x+1)...

    Text Solution

    |

  19. The solution of the equation "log"pi("log"(2) ("log"(7)x)) = 0, is

    Text Solution

    |

  20. If "log"(4) 2 + "log"(4) 4 + "log"(4) 16 + "log"(4) x = 6, then x =

    Text Solution

    |