Home
Class 11
MATHS
The value of "log"(2)"log"(2)"log"(4) 25...

The value of `"log"_(2)"log"_(2)"log"_(4) 256 + 2 "log"_(sqrt(2))2`, is

A

2

B

3

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{2} \log_{2} \log_{4} 256 + 2 \log_{\sqrt{2}} 2 \), we will break it down step by step. ### Step 1: Simplify \( \log_{4} 256 \) First, we know that \( 256 = 4^4 \) because \( 4^4 = (2^2)^4 = 2^8 = 256 \). Therefore, we can write: \[ \log_{4} 256 = \log_{4} (4^4) = 4 \] **Hint:** Remember that \( \log_{b} (b^n) = n \). ### Step 2: Substitute back into the expression Now we substitute \( \log_{4} 256 \) back into the original expression: \[ \log_{2} \log_{2} 4 + 2 \log_{\sqrt{2}} 2 \] **Hint:** Keep track of what you substitute to avoid confusion. ### Step 3: Simplify \( \log_{2} 4 \) Next, we simplify \( \log_{2} 4 \). Since \( 4 = 2^2 \): \[ \log_{2} 4 = \log_{2} (2^2) = 2 \] **Hint:** Use the property \( \log_{b} (a^n) = n \log_{b} a \). ### Step 4: Substitute again Now substitute \( \log_{2} 4 \) back into the expression: \[ \log_{2} 2 + 2 \log_{\sqrt{2}} 2 \] **Hint:** Keep substituting step by step to simplify the expression. ### Step 5: Simplify \( \log_{2} 2 \) We know that: \[ \log_{2} 2 = 1 \] **Hint:** Remember that \( \log_{b} b = 1 \). ### Step 6: Simplify \( \log_{\sqrt{2}} 2 \) Next, we simplify \( \log_{\sqrt{2}} 2 \). Since \( \sqrt{2} = 2^{1/2} \): \[ \log_{\sqrt{2}} 2 = \frac{\log_{2} 2}{\log_{2} \sqrt{2}} = \frac{1}{1/2} = 2 \] **Hint:** Use the change of base formula if needed. ### Step 7: Substitute back into the expression Now substitute \( \log_{\sqrt{2}} 2 \) back into the expression: \[ 1 + 2 \cdot 2 \] ### Step 8: Calculate the final expression Now we calculate: \[ 1 + 4 = 5 \] Thus, the value of the expression \( \log_{2} \log_{2} \log_{4} 256 + 2 \log_{\sqrt{2}} 2 \) is \( 5 \). **Final Answer:** 5
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

The sum of the series "log"_(4)2-"log"_(8)2 + "log"_(16)2- "log"_(32) 2+…., is

If x=-2 , then the value of "log"_(4)((x^(2))/(4)) -2 "log"_(4)(4x^(4)), is

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is

The value of ((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2) is 3 (b) 0 (c) 2 (d) 1

The value of ((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2) is 3 (b) 0 (c) 2 (d) 1

The value of log_(8)17/(log_(9)23)-log_(2sqrt2)17/(log_(3)23) is equal to

The solution set of the equation "log"_(x)2 xx "log"_(2x)2 = "log"_(4x) 2, is

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If a =log3(5) and b =log17( 25), which one of the following is correct...

    Text Solution

    |

  2. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  3. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |

  4. loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

    Text Solution

    |

  5. If "log"(2) 7 = x, then x is:

    Text Solution

    |

  6. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  7. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  8. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |

  9. If log(2a-3b)=loga-logb, then a=

    Text Solution

    |

  10. If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y)...

    Text Solution

    |

  11. ("log"(2)a)/(3) = ("log"(2)b)/(4) = ("log"(2)c)/(5lambda) " and " a^(-...

    Text Solution

    |

  12. if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

    Text Solution

    |

  13. The value of (0.16)^log2.5{1/3+1/3^2+...} is

    Text Solution

    |

  14. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  15. Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80).

    Text Solution

    |

  16. If 1/2logx+1/2logy+log2=log(x+y) then :

    Text Solution

    |

  17. The number of real solutions of the equation "log" (-x) = 2"log" (x+1)...

    Text Solution

    |

  18. The solution of the equation "log"pi("log"(2) ("log"(7)x)) = 0, is

    Text Solution

    |

  19. If "log"(4) 2 + "log"(4) 4 + "log"(4) 16 + "log"(4) x = 6, then x =

    Text Solution

    |

  20. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |