Home
Class 11
MATHS
loga/(y-z)=logb/(z-x)=logc/(x-y) then va...

`loga/(y-z)=logb/(z-x)=logc/(x-y)` then value of `abc=`

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{\log a}{y - z} = \frac{\log b}{z - x} = \frac{\log c}{x - y} \), we can follow these steps: ### Step 1: Set the common ratio Let us denote the common ratio as \( \lambda \). Therefore, we can write: \[ \log a = \lambda (y - z) \] \[ \log b = \lambda (z - x) \] \[ \log c = \lambda (x - y) \] **Hint:** Assign a variable to the common ratio to simplify the equations. ### Step 2: Add the logarithmic equations Now, we will add the three logarithmic equations together: \[ \log a + \log b + \log c = \lambda (y - z) + \lambda (z - x) + \lambda (x - y) \] **Hint:** Remember that the sum of logarithms can be combined into the logarithm of a product. ### Step 3: Simplify the right-hand side The right-hand side simplifies as follows: \[ \lambda (y - z + z - x + x - y) = \lambda (0) = 0 \] **Hint:** Notice that the terms in the parentheses cancel each other out. ### Step 4: Conclude the logarithmic sum Thus, we have: \[ \log a + \log b + \log c = 0 \] **Hint:** This indicates that the product of \( a, b, c \) is equal to 1. ### Step 5: Use properties of logarithms Using the property of logarithms that states \( \log (abc) = 0 \) implies: \[ abc = 10^0 = 1 \] **Hint:** Recall that any number raised to the power of 0 is equal to 1. ### Final Result The value of \( abc \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to

if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If x, y, z are distinct positive numbers such that x+(1)/(y)=y+(1)/(z)=z+(1)/(x) , then the value of xyz is __________

If a, b, c are distinct positive real numbers each different from unity such that (log_b a.log_c a -log_a a) + (log_a b.log_c b-logb_ b) + (log_a c.log_b c - log_c c) = 0, then prove that abc = 1.

If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

The value of the determinant |[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|

if x =log_a (bc), y= log_b (ca) and z=log_c(ab) then 1/(x+1)+1/(y+1)+1/(z+1)

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If x ="log"(a)(bc), y ="log"(b)(ca) " and "z = "log"(c)(ab), then whi...

    Text Solution

    |

  2. The value of "log"(2)"log"(2)"log"(4) 256 + 2 "log"(sqrt(2))2, is

    Text Solution

    |

  3. loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

    Text Solution

    |

  4. If "log"(2) 7 = x, then x is:

    Text Solution

    |

  5. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  6. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  7. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |

  8. If log(2a-3b)=loga-logb, then a=

    Text Solution

    |

  9. If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y)...

    Text Solution

    |

  10. ("log"(2)a)/(3) = ("log"(2)b)/(4) = ("log"(2)c)/(5lambda) " and " a^(-...

    Text Solution

    |

  11. if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

    Text Solution

    |

  12. The value of (0.16)^log2.5{1/3+1/3^2+...} is

    Text Solution

    |

  13. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  14. Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80).

    Text Solution

    |

  15. If 1/2logx+1/2logy+log2=log(x+y) then :

    Text Solution

    |

  16. The number of real solutions of the equation "log" (-x) = 2"log" (x+1)...

    Text Solution

    |

  17. The solution of the equation "log"pi("log"(2) ("log"(7)x)) = 0, is

    Text Solution

    |

  18. If "log"(4) 2 + "log"(4) 4 + "log"(4) 16 + "log"(4) x = 6, then x =

    Text Solution

    |

  19. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |

  20. If a^x=b ,b^y=c ,c^z=a , then find the value of x y zdot

    Text Solution

    |