Home
Class 11
MATHS
If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+...

If `(logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2),` then `x^(a-b)*y^(b-c)*z^(c-a)=`

A

0

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\log x}{a^2 + ab + b^2} = \frac{\log y}{b^2 + bc + c^2} = \frac{\log z}{c^2 + ca + a^2}, \] we will denote the common value of these ratios as \( k \). Thus, we can write: 1. \(\log x = k(a^2 + ab + b^2)\) 2. \(\log y = k(b^2 + bc + c^2)\) 3. \(\log z = k(c^2 + ca + a^2)\) Next, we will manipulate each equation to express \( x^{a-b} \), \( y^{b-c} \), and \( z^{c-a} \). ### Step 1: Express \( x^{a-b} \) From the first equation: \[ \log x = k(a^2 + ab + b^2) \] Multiplying both sides by \( a - b \): \[ (a - b) \log x = k(a - b)(a^2 + ab + b^2) \] Using the property of logarithms \( n \log m = \log m^n \): \[ \log(x^{a-b}) = k(a - b)(a^2 + ab + b^2) \] Thus, we can express \( x^{a-b} \) as: \[ x^{a-b} = 10^{k(a - b)(a^2 + ab + b^2)} \] ### Step 2: Express \( y^{b-c} \) From the second equation: \[ \log y = k(b^2 + bc + c^2) \] Multiplying both sides by \( b - c \): \[ (b - c) \log y = k(b - c)(b^2 + bc + c^2) \] Using the logarithmic property again: \[ \log(y^{b-c}) = k(b - c)(b^2 + bc + c^2) \] Thus, we can express \( y^{b-c} \) as: \[ y^{b-c} = 10^{k(b - c)(b^2 + bc + c^2)} \] ### Step 3: Express \( z^{c-a} \) From the third equation: \[ \log z = k(c^2 + ca + a^2) \] Multiplying both sides by \( c - a \): \[ (c - a) \log z = k(c - a)(c^2 + ca + a^2) \] Using the logarithmic property again: \[ \log(z^{c-a}) = k(c - a)(c^2 + ca + a^2) \] Thus, we can express \( z^{c-a} \) as: \[ z^{c-a} = 10^{k(c - a)(c^2 + ca + a^2)} \] ### Step 4: Combine the results Now, we need to find the product: \[ x^{a-b} \cdot y^{b-c} \cdot z^{c-a} \] Substituting the expressions we derived: \[ x^{a-b} \cdot y^{b-c} \cdot z^{c-a} = 10^{k(a - b)(a^2 + ab + b^2)} \cdot 10^{k(b - c)(b^2 + bc + c^2)} \cdot 10^{k(c - a)(c^2 + ca + a^2)} \] Combining the exponents: \[ = 10^{k\left((a - b)(a^2 + ab + b^2) + (b - c)(b^2 + bc + c^2) + (c - a)(c^2 + ca + a^2)\right)} \] ### Step 5: Simplifying the exponent Notice that: 1. The terms \( a^2 + ab + b^2 \), \( b^2 + bc + c^2 \), and \( c^2 + ca + a^2 \) will cancel out when we expand the expression because each term appears once positively and once negatively in the overall sum. Thus, the entire exponent simplifies to zero: \[ = 10^0 = 1 \] ### Final Answer Therefore, the value of \( x^{a-b} \cdot y^{b-c} \cdot z^{c-a} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) , then which of the following is/are true? z y z=1 (b) x^a y^b z^c=1 x^(b+c)y^(c+b)=1 (d) x y z=x^a y^b z^c

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

If a = b^(2x) , b = c^(2y) and c = a^(2z) , show that 8xyz = 1.

Prove: |((b+c)^2, a^2, b c) ,((c+a)^2, b^2 ,c a),( (a+b)^2, c^2, a b)|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2) .

Prove that: ((x^a)/(x^(b)))^(a^(2+a b+b^2))\ xx\ ((x^b)/(x^(c)))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^(a)))^(c^(2+c a+a^2))=1

Prove that: ((x^a)/(x^b))^(a^(2+a b+b^(2)))xx\ ((x^b)/(x^c))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^a))^(c^(2+c a+a^2))

Prove that [[1+a^2+a^4, 1+a b+a^2b^2 ,1+a c+a^2c^2],[ 1+a b+a^2b^2, 1+b^2+b^4, 1+b c+b^2c^2],[ 1+a c+a^2c^2, 1+b c+b^2c^2, 1+c^2+c^2]]=(a-b)^2(b-c)^2(c-a)^2

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(a^2+a b+b^2)((x^b)/(x^c))^(b^2+b c+c^2)((x^c)/(x^a))^(c^2+c a+a^2)=1

Prove: |(a^2,a^2-(b-c)^2,b c), (b^2,b^2-(c-a)^2,c a),( c^2,c^2-(a-b)^2,a b)|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  2. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  3. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |

  4. If log(2a-3b)=loga-logb, then a=

    Text Solution

    |

  5. If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y)...

    Text Solution

    |

  6. ("log"(2)a)/(3) = ("log"(2)b)/(4) = ("log"(2)c)/(5lambda) " and " a^(-...

    Text Solution

    |

  7. if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

    Text Solution

    |

  8. The value of (0.16)^log2.5{1/3+1/3^2+...} is

    Text Solution

    |

  9. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  10. Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80).

    Text Solution

    |

  11. If 1/2logx+1/2logy+log2=log(x+y) then :

    Text Solution

    |

  12. The number of real solutions of the equation "log" (-x) = 2"log" (x+1)...

    Text Solution

    |

  13. The solution of the equation "log"pi("log"(2) ("log"(7)x)) = 0, is

    Text Solution

    |

  14. If "log"(4) 2 + "log"(4) 4 + "log"(4) 16 + "log"(4) x = 6, then x =

    Text Solution

    |

  15. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |

  16. If a^x=b ,b^y=c ,c^z=a , then find the value of x y zdot

    Text Solution

    |

  17. The value of "log"(b)a xx "log"(c) b xx "log"(a)c, is

    Text Solution

    |

  18. If "log"(a) ab = x, then the value of "log"(b)ab, is

    Text Solution

    |

  19. If x=-2, then the value of "log"(4)((x^(2))/(4)) -2 "log"(4)(4x^(4)), ...

    Text Solution

    |

  20. The value of sqrt(4 xx "log"(0.5)2), is

    Text Solution

    |