Home
Class 11
MATHS
If ("log"3)/(x-y) = ("log"5)/(y-z) = ("l...

If `("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =`

A

0

B

2

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{\log 3}{x - y} = \frac{\log 5}{y - z} = \frac{\log 7}{z - x} = k \] ### Step 1: Express each logarithm in terms of \( k \) From the equation, we can express each logarithm in terms of \( k \): \[ \log 3 = k(x - y) \] \[ \log 5 = k(y - z) \] \[ \log 7 = k(z - x) \] ### Step 2: Exponentiate to eliminate logarithms Using the property \( \log a = b \implies a = 10^b \), we can rewrite the logarithmic equations in exponential form: \[ 3 = 10^{k(x - y)} \] \[ 5 = 10^{k(y - z)} \] \[ 7 = 10^{k(z - x)} \] ### Step 3: Substitute into the expression We need to evaluate the expression: \[ 3^{x+y} \cdot 5^{y+z} \cdot 7^{z+x} \] Substituting the values of \( 3 \), \( 5 \), and \( 7 \) from the previous steps: \[ 3^{x+y} = (10^{k(x - y)})^{x+y} = 10^{k(x - y)(x + y)} \] \[ 5^{y+z} = (10^{k(y - z)})^{y+z} = 10^{k(y - z)(y + z)} \] \[ 7^{z+x} = (10^{k(z - x)})^{z+x} = 10^{k(z - x)(z + x)} \] ### Step 4: Combine the expressions Now, we combine these expressions: \[ 3^{x+y} \cdot 5^{y+z} \cdot 7^{z+x} = 10^{k(x - y)(x + y)} \cdot 10^{k(y - z)(y + z)} \cdot 10^{k(z - x)(z + x)} \] Using the property of exponents \( a^m \cdot a^n = a^{m+n} \): \[ = 10^{k\left((x - y)(x + y) + (y - z)(y + z) + (z - x)(z + x)\right)} \] ### Step 5: Simplify the exponent Now, we simplify the exponent: 1. \( (x - y)(x + y) = x^2 - y^2 \) 2. \( (y - z)(y + z) = y^2 - z^2 \) 3. \( (z - x)(z + x) = z^2 - x^2 \) Combining these: \[ x^2 - y^2 + y^2 - z^2 + z^2 - x^2 = 0 \] ### Step 6: Final result Thus, the exponent simplifies to \( 0 \): \[ 3^{x+y} \cdot 5^{y+z} \cdot 7^{z+x} = 10^{k \cdot 0} = 10^0 = 1 \] Therefore, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,p rov et h a t1+x y z=2y zdot

The value of x^("log"_(x) a xx "log"_(a)y xx "log"_(y) z) is

If log_(3) y = x and log_(2) z = x , " find " 72^(x) in terms of y and z.

For the system of equation "log"_(10) (x^(3)-x^(2)) = "log"_(5)y^(2) "log"_(10)(y^(3)-y^(2)) = "log"_(5) z^(2) "log"_(10)(z^(3)-z^(2)) = "log"_(5)x^(2) Which of the following is/are true?

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  2. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  3. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |

  4. If log(2a-3b)=loga-logb, then a=

    Text Solution

    |

  5. If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y)...

    Text Solution

    |

  6. ("log"(2)a)/(3) = ("log"(2)b)/(4) = ("log"(2)c)/(5lambda) " and " a^(-...

    Text Solution

    |

  7. if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

    Text Solution

    |

  8. The value of (0.16)^log2.5{1/3+1/3^2+...} is

    Text Solution

    |

  9. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  10. Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80).

    Text Solution

    |

  11. If 1/2logx+1/2logy+log2=log(x+y) then :

    Text Solution

    |

  12. The number of real solutions of the equation "log" (-x) = 2"log" (x+1)...

    Text Solution

    |

  13. The solution of the equation "log"pi("log"(2) ("log"(7)x)) = 0, is

    Text Solution

    |

  14. If "log"(4) 2 + "log"(4) 4 + "log"(4) 16 + "log"(4) x = 6, then x =

    Text Solution

    |

  15. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |

  16. If a^x=b ,b^y=c ,c^z=a , then find the value of x y zdot

    Text Solution

    |

  17. The value of "log"(b)a xx "log"(c) b xx "log"(a)c, is

    Text Solution

    |

  18. If "log"(a) ab = x, then the value of "log"(b)ab, is

    Text Solution

    |

  19. If x=-2, then the value of "log"(4)((x^(2))/(4)) -2 "log"(4)(4x^(4)), ...

    Text Solution

    |

  20. The value of sqrt(4 xx "log"(0.5)2), is

    Text Solution

    |