Home
Class 11
MATHS
if loga/(b-c)=logb/(c-a)=logc/(a-b) then...

if `loga/(b-c)=logb/(c-a)=logc/(a-b)` then find the value of `a^ab^bc^c`

A

0

B

1

C

abc

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equality: \[ \frac{\log a}{b - c} = \frac{\log b}{c - a} = \frac{\log c}{a - b} \] Let's denote this common value as \( k \). Therefore, we can write: 1. \(\log a = k(b - c)\) 2. \(\log b = k(c - a)\) 3. \(\log c = k(a - b)\) ### Step 1: Express \(\log a\), \(\log b\), and \(\log c\) in terms of \( k \) From the equations we have: \[ \log a = k(b - c) \] \[ \log b = k(c - a) \] \[ \log c = k(a - b) \] ### Step 2: Add all three equations Now, we add all three equations: \[ \log a + \log b + \log c = k(b - c) + k(c - a) + k(a - b) \] ### Step 3: Simplify the right-hand side The right-hand side simplifies as follows: \[ k(b - c + c - a + a - b) = k(0) = 0 \] Thus, we have: \[ \log a + \log b + \log c = 0 \] ### Step 4: Apply the property of logarithms Using the property of logarithms that states \(\log x + \log y + \log z = \log(xyz)\), we can rewrite the left-hand side: \[ \log(abc) = 0 \] ### Step 5: Exponentiate both sides Exponentiating both sides gives us: \[ abc = 10^0 = 1 \] ### Step 6: Find \( a^a b^b c^c \) Now we need to find the value of \( a^a b^b c^c \). We already know: \[ \log a + \log b + \log c = 0 \] This implies: \[ \log(a^a) + \log(b^b) + \log(c^c) = a \log a + b \log b + c \log c \] Using the earlier derived equations: \[ a \log a = a \cdot k(b - c) \] \[ b \log b = b \cdot k(c - a) \] \[ c \log c = c \cdot k(a - b) \] Adding these gives: \[ a \log a + b \log b + c \log c = k(ab - ac + bc - ba + ca - cb) = k(0) = 0 \] Thus: \[ \log(a^a b^b c^c) = 0 \] ### Step 7: Exponentiate again Exponentiating both sides gives us: \[ a^a b^b c^c = 10^0 = 1 \] ### Final Answer Therefore, the value of \( a^a b^b c^c \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b) , prove the following . a^a.b^b.c^c=1

Let (log a)/( b-c) = (logb)/(c-a) = (log c)/(a-b) STATEMENT 1: a^(a) b^(b) c^(c) = 1 STATEMENT 2: a^(b+c) b^(c +a) c^(a + b) = 1

If log(2a-3b)=loga-logb, then a=

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

If loga=1/2 logb=1/5logc then a^4b^3c^(-2)=

In DeltaABC , if (sin A)/(c sin B) + (sin B)/(c) + (sin C)/(b) = (c)/(ab) + (b)/(ac) + (a)/(bc) , then the value of angle A is

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Exercise
  1. If 2^((3)/("log"(3)x)) = (1)/(64), then x =

    Text Solution

    |

  2. If a = 1 + log(x) yz, b = 1 + log(y) zx and c = 1 + log xy where x, ...

    Text Solution

    |

  3. If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), the...

    Text Solution

    |

  4. If log(2a-3b)=loga-logb, then a=

    Text Solution

    |

  5. If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y)...

    Text Solution

    |

  6. ("log"(2)a)/(3) = ("log"(2)b)/(4) = ("log"(2)c)/(5lambda) " and " a^(-...

    Text Solution

    |

  7. if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

    Text Solution

    |

  8. The value of (0.16)^log2.5{1/3+1/3^2+...} is

    Text Solution

    |

  9. if a^2+4b^2=12ab, then log(a+2b)

    Text Solution

    |

  10. Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80).

    Text Solution

    |

  11. If 1/2logx+1/2logy+log2=log(x+y) then :

    Text Solution

    |

  12. The number of real solutions of the equation "log" (-x) = 2"log" (x+1)...

    Text Solution

    |

  13. The solution of the equation "log"pi("log"(2) ("log"(7)x)) = 0, is

    Text Solution

    |

  14. If "log"(4) 2 + "log"(4) 4 + "log"(4) 16 + "log"(4) x = 6, then x =

    Text Solution

    |

  15. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |

  16. If a^x=b ,b^y=c ,c^z=a , then find the value of x y zdot

    Text Solution

    |

  17. The value of "log"(b)a xx "log"(c) b xx "log"(a)c, is

    Text Solution

    |

  18. If "log"(a) ab = x, then the value of "log"(b)ab, is

    Text Solution

    |

  19. If x=-2, then the value of "log"(4)((x^(2))/(4)) -2 "log"(4)(4x^(4)), ...

    Text Solution

    |

  20. The value of sqrt(4 xx "log"(0.5)2), is

    Text Solution

    |