Home
Class 11
MATHS
If 2^(x).9^(2x+3) = 7^(x+5), then x =...

If `2^(x).9^(2x+3) = 7^(x+5)`, then x =

A

`(5"log"7 +6"log"3)/("log" 162-"log"7)`

B

`(5"log"7-6"log"3)/("log"162 + "log" 7)`

C

`(5"log" 7-6 "log" 3)/("log"162-"log"7)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2^x \cdot 9^{2x+3} = 7^{x+5} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the original equation: \[ 2^x \cdot 9^{2x+3} = 7^{x+5} \] We know that \( 9 \) can be expressed as \( 3^2 \). Thus, we can rewrite \( 9^{2x+3} \) as: \[ 9^{2x+3} = (3^2)^{2x+3} = 3^{4x + 6} \] So, the equation becomes: \[ 2^x \cdot 3^{4x + 6} = 7^{x + 5} \] ### Step 2: Separate the terms Now, we can express the equation in terms of \( x \): \[ 2^x \cdot 3^{4x + 6} = 7^x \cdot 7^5 \] This simplifies to: \[ 2^x \cdot 3^{4x + 6} = 7^x \cdot 16807 \quad (\text{since } 7^5 = 16807) \] ### Step 3: Isolate the terms with \( x \) Next, we can rearrange the equation: \[ \frac{2^x \cdot 3^{4x + 6}}{7^x} = 16807 \] This can be rewritten as: \[ \left(\frac{2 \cdot 3^4}{7}\right)^x \cdot 3^6 = 16807 \] Calculating \( 3^4 \) gives \( 81 \), so: \[ \frac{2 \cdot 81}{7} = \frac{162}{7} \] Thus, we have: \[ \left(\frac{162}{7}\right)^x \cdot 729 = 16807 \] (where \( 3^6 = 729 \)) ### Step 4: Further simplify Now we can isolate \( x \): \[ \left(\frac{162}{7}\right)^x = \frac{16807}{729} \] ### Step 5: Take logarithm of both sides Taking logarithm on both sides: \[ \log\left(\left(\frac{162}{7}\right)^x\right) = \log\left(\frac{16807}{729}\right) \] Using the property of logarithms \( \log(a^b) = b \cdot \log(a) \): \[ x \cdot \log\left(\frac{162}{7}\right) = \log(16807) - \log(729) \] ### Step 6: Solve for \( x \) Now we can solve for \( x \): \[ x = \frac{\log(16807) - \log(729)}{\log\left(\frac{162}{7}\right)} \] ### Step 7: Calculate the logarithms We know: - \( \log(16807) = 5 \cdot \log(7) \) - \( \log(729) = 6 \cdot \log(3) \) Substituting these values: \[ x = \frac{5 \cdot \log(7) - 6 \cdot \log(3)}{\log(162) - \log(7)} \] Where \( \log(162) = \log(2 \cdot 81) = \log(2) + 4 \cdot \log(3) \). ### Final Result Thus, the value of \( x \) is: \[ x = \frac{5 \cdot \log(7) - 6 \cdot \log(3)}{\log(2) + 4 \cdot \log(3) - \log(7)} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If p(x)=3x^2+9x+7 and p(a)=2 , then a=

If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

Find the derivative of f(x) = 2 x^(3) + 3x^(2) + 5x + 9 at x = 2

Solve for x: 11^(4x-5)*3^(2x)=5^(3-x) * 7^(-x) .

Find the sum of the following algebraic expressions : 3x^(3) - 5x^(2) + 2x + 1 , 3x - 2x^(3) - x^(3) , 2x^(2) - 7x + 9

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

If x is real, then minimum vlaue of (3x ^(2) + 9x +17)/(3x ^(2) +9x+7) is:

If Delta (x) =|{:(x^(2)-5x+3,2x-5,3),(3x^(2)+x+4,6x+1,9),(7x^(2)-6x+9,14x-6,21):}| = ax^(3) +bx^(2)+cx+d , then

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots are…………………

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  2. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  3. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  4. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  5. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  6. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  7. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  8. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  9. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  10. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  11. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  12. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  13. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  14. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  15. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  16. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  17. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  18. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  19. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |

  20. If "log"(2) "sin" x - "log"(2) "cos" x - "log"(2) (1-"tan"^(2) x) =-1,...

    Text Solution

    |