Home
Class 11
MATHS
If x^("log"(x)(x^(2)-4x +5)) = (x-1), th...

If `x^("log"_(x)(x^(2)-4x +5)) = (x-1)`, then x =

A

1

B

2

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{\log_{x}(x^2 - 4x + 5)} = x - 1 \), we can follow these steps: ### Step 1: Rewrite the equation using the property of logarithms We know that \( a^{\log_b(c)} = c^{\log_b(a)} \). Therefore, we can rewrite the left-hand side of the equation: \[ x^{\log_{x}(x^2 - 4x + 5)} = x^2 - 4x + 5 \] So, we can rewrite the equation as: \[ x^2 - 4x + 5 = x - 1 \] ### Step 2: Rearrange the equation Now, we will move all terms to one side of the equation: \[ x^2 - 4x + 5 - x + 1 = 0 \] This simplifies to: \[ x^2 - 5x + 6 = 0 \] ### Step 3: Factor the quadratic equation Next, we will factor the quadratic equation \( x^2 - 5x + 6 \): \[ (x - 2)(x - 3) = 0 \] ### Step 4: Solve for x Setting each factor to zero gives us the possible solutions: \[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] \[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \] ### Step 5: Check the solutions We need to check if both solutions satisfy the original equation. **For \( x = 2 \)**: \[ x^2 - 4x + 5 = 2^2 - 4 \cdot 2 + 5 = 4 - 8 + 5 = 1 \] \[ x - 1 = 2 - 1 = 1 \] Both sides are equal, so \( x = 2 \) is a valid solution. **For \( x = 3 \)**: \[ x^2 - 4x + 5 = 3^2 - 4 \cdot 3 + 5 = 9 - 12 + 5 = 2 \] \[ x - 1 = 3 - 1 = 2 \] Both sides are equal, so \( x = 3 \) is also a valid solution. ### Final Answer The solutions to the equation are \( x = 2 \) and \( x = 3 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

If 7^(log 7(x^(2)-4x + 5))=x - 1 , x may have values

If x^({(3)/(4)("log"_(3)x)^(2) + ("log"_(3)x)-(5)/(4)}) = sqrt(3) , then x has

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

Let x_(1) and x_(2) be two solutions of the equalition log_(x)(3x^(log_(5)x)+4) = 2log_(5)x , then the product x_(1)x_(2) is equal to

If log_5(5^(1/x)+125)=log_5 6+1+1/(2x) , then x =

If "log"_(2)x + "log"_(4)x + "log"_(16)x = (21)/(4) , then x equals to

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  2. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  3. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  4. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  5. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  6. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  7. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  8. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  9. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  10. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  11. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  12. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  13. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  14. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  15. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  16. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  17. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  18. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  19. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |

  20. If "log"(2) "sin" x - "log"(2) "cos" x - "log"(2) (1-"tan"^(2) x) =-1,...

    Text Solution

    |