Home
Class 11
MATHS
If x = "log"(2) 3 " and " y = "log"(1//2...

If `x = "log"_(2) 3 " and " y = "log"_(1//2) 5`, then

A

`x gt y`

B

`x lt y`

C

`x = y`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the values of \( x \) and \( y \) given as follows: 1. \( x = \log_2 3 \) 2. \( y = \log_{1/2} 5 \) ### Step 1: Rewrite \( y \) We can rewrite \( y \) using the change of base property of logarithms. The base \( \frac{1}{2} \) can be expressed as \( 2^{-1} \). Using the property \( \log_a b = \frac{\log_c b}{\log_c a} \), we can express \( y \) as: \[ y = \log_{1/2} 5 = \log_{2^{-1}} 5 = \frac{\log_2 5}{\log_2 (2^{-1})} \] Since \( \log_2 (2^{-1}) = -1 \), we have: \[ y = -\log_2 5 \] ### Step 2: Compare \( x \) and \( y \) Now we have: - \( x = \log_2 3 \) - \( y = -\log_2 5 \) We can rewrite \( y \) as: \[ y = \log_2 (5^{-1}) = \log_2 \left(\frac{1}{5}\right) \] ### Step 3: Compare the logarithmic values Now we need to compare \( x \) and \( y \): - \( x = \log_2 3 \) - \( y = \log_2 \left(\frac{1}{5}\right) \) Since both logarithms have the same base (base 2), we can directly compare the arguments: - \( 3 \) and \( \frac{1}{5} \) Since \( 3 > \frac{1}{5} \), we can conclude that: \[ \log_2 3 > \log_2 \left(\frac{1}{5}\right) \] Thus, \( x > y \). ### Final Conclusion The final result is: \[ x > y \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

If "log"_(4) 5 = x " and log"_(5) 6 = y, " then log"_(2) 3 is equal to

The number of ordered pairs (x, y) satisfying 4("log"_(2) x^(2))^(2) + 1 = 2 "log"_(2)y " and log"_(2)x^(2) ge "log"_(2) y , is

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  2. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  3. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  4. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  5. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  6. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  7. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  8. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  9. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  10. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  11. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  12. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  13. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  14. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  15. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  16. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  17. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  18. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  19. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |

  20. If "log"(2) "sin" x - "log"(2) "cos" x - "log"(2) (1-"tan"^(2) x) =-1,...

    Text Solution

    |