Home
Class 11
MATHS
If (1)/("log"(3) pi) + (1)/("log"(4) pi)...

If `(1)/("log"_(3) pi) + (1)/("log"_(4) pi) gt x`, then the greatest integral value of is

A

2

B

3

C

`pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \frac{1}{\log_3 \pi} + \frac{1}{\log_4 \pi} > x \), we can follow these steps: ### Step 1: Use the Change of Base Formula We start by applying the change of base formula for logarithms, which states that: \[ \frac{1}{\log_b a} = \log_a b \] Using this, we can rewrite the terms: \[ \frac{1}{\log_3 \pi} = \log_\pi 3 \quad \text{and} \quad \frac{1}{\log_4 \pi} = \log_\pi 4 \] Thus, the inequality becomes: \[ \log_\pi 3 + \log_\pi 4 > x \] ### Step 2: Combine the Logarithms Using the property of logarithms that states \( \log_a b + \log_a c = \log_a (bc) \), we can combine the logarithms: \[ \log_\pi 3 + \log_\pi 4 = \log_\pi (3 \cdot 4) = \log_\pi 12 \] So, we now have: \[ \log_\pi 12 > x \] ### Step 3: Rewrite the Inequality This can be rewritten as: \[ x < \log_\pi 12 \] ### Step 4: Change the Base Again Using the change of base formula again, we can express \( \log_\pi 12 \) in terms of natural logarithms: \[ \log_\pi 12 = \frac{\log 12}{\log \pi} \] ### Step 5: Calculate the Value Now we need to find the numerical value of \( \frac{\log 12}{\log \pi} \). Using a calculator: - \( \log 12 \approx 1.07918 \) - \( \log \pi \approx 1.14473 \) Thus, \[ \log_\pi 12 \approx \frac{1.07918}{1.14473} \approx 0.942 \] ### Step 6: Find the Greatest Integral Value Since \( x < \log_\pi 12 \approx 0.942 \), the greatest integral value of \( x \) that satisfies this inequality is: \[ \lfloor 0.942 \rfloor = 0 \] ### Conclusion Therefore, the greatest integral value of \( x \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

if 1/log_3 pi +1/log_4 pi >x then x be

The value of 1/(log_3pi)+1/(log_4pi) is

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(-2) + 1/y^(-2) equals .

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

If f(x)=(tan(pi/4+(log)_e x))^((log)_x e) is to be made continuous at x=1, then what is the value of f(1)?

The number of integral values of a for which f(x)="log"((log)_(1/3)((log)_7(sinx+a))) is defined for every real value of x is ________

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  2. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  3. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  4. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  5. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  6. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  7. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  8. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  9. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  10. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  11. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  12. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  13. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  14. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  15. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  16. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  17. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  18. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  19. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |

  20. If "log"(2) "sin" x - "log"(2) "cos" x - "log"(2) (1-"tan"^(2) x) =-1,...

    Text Solution

    |